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Abstract: The three tank system is a widely used laboratory system in control theory. In 
this case study an optimal control method is presented over it. Building the linearized 
mathematical model, the H2/H∞ minimax method is applied, known also as minimax, 
extended or disurbance rejection LQ control, and the obtained results are compared 
with the classical LQ control, proving the superiority of the minimax LQ mehtod. The 
simulations were carried out in Matlab-Simulink. 
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1 Introduction 

Liquid level control has a very large application domain in industry. Its most 
representative didactical equipments are the tank systems, i.e. one, three [1] or four 
tank systems [2]. Moreover, the three tank system (3TS) is one of the most widely 
used laboratory system in control theory. 

This case-study deals with the control of the 3TS using modern control methods. 
More precisely, the extended LQ control, known as disturbance rejection LQ 
control is applied [3], and the obtained results are compared with those obtained by 
the classical LQ one. The simulations were carried out in Matlab-Simulink. 

2 Mathematical Modeling of the 3TS 

The basic equation of the mathematical model is based on Bernoulli’s law for 
liquids [4], [5], [6]. The system is a MIMO system with two inputs and two outputs 
presented in Figure 1. 
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Figure 1 

General model of the 3TS 

The input voltage signals of the pumps, uc1 and uc2 were considered the inputs of the 
system, while the liquid levels h1 and h2 the outputs. The disturbances of the system 
were considered the positions of the valves (0 = closed, 1 = open), namely the 
valves between the tanks, us13, us32, the nominal outflow valve ug2 and the outflow 
valve of each tank, ue1, ue2, ue3. The linearized mathematical model given by 
equations (1)–(5) was obtained from the non-linear model, [4], [5], using 
linearization over trajectories in the vicinity of stationary variables marked with 
indices “0”. 

One can observe the disadvantage of the obtained mathematical model, namely that 
the equations are modelling correctly the 3TS only when the liquid levels are not 
the equal. Therefore, the paper discusses only the situation when the liquid levels 
are different. 

In the case when the liquid levels are equal, the 3TS becomes a collection of three 
independent one tank system, due to the fact that they are in equilibrium. 
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Δy1 = Δh1  (4) 

Δy2 = Δh2  (5) 

Comparing the non-linear and linearized system (the steady-state points were 
selected h10 = 50 cm, h20 = 10 cm, and h30 = 30 cm), the linearized system proved to 
approximate correctly the non-linear system, [5]. 
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3 Minimax Control of the 3TS 

In this situation the case study was considered with every valve in open position: 

us13 = us32 = ug2 = ue1 = ue2 = ue3 = 1  (6) 

The initial liquid levels were the same as before: h10 = 50 cm, h20 = 10 cm, and h30 
= 30 cm. 

The disturbance rejection problem is based on a minimax criteria [1], where the 
system dynamics is generally described by: 

)()(
)()()()(

tCxty
tLdtButAxtx

=
++=

  (7) 

Here one can observe that the desired input (control signal, u(t)) is treated 
separately from the disturbance input d(t). As a result the general B matrix of an 
LTI system is separated in two: in a new B matrix (for the control signal) and an L 
matrix (for the disturbance signal). 

The quadratic cost functional is extended from the classical LQ problem to include 
the effect of disturbance d(t) explicitly: 

∫
∞

−+=
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2
2
1 dt)]t(d)t(d)t(u)t(u)t(y)t(y[)d,u(J TTT γ  (8) 

It can be seen that the R and Q matrix from the classical LQ control description are 
not appearing now and the weighting is made here by one parameter, γ. 

(8) reflects that the disturbance attempts to maximize the cost while we want to find 
a control u(t) that minimizes the maximum cost achivable by the disturbance (by the 
worst case disturbance). 

According to [1], the optimal control and the worst case disturbance is given by: 

)t(PxB)t(u *T* −=   (9) 

)t(PxL)t(d *T*
2

1

γ
=   (10) 

where P is a positive definite symmetric solution to the modified control algebraic 
Riccati equation (MCARE): 
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 (11) 
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To solve the above formulated problem for the 3TS firstly we had to determine with 
Matlab the optimal γ (γ Є [0,1]). Using γ-iteration it has resulted for the optimal 
value: γmin=0.0115, [6]. 

To check the optimality of the obtained result, the disturbance rejection was tested 
in case of the 3TS for three values of γmin, namely: γ= γmin, γ= 10 γmin, γ= 100 γmin. 

The resulted solutions of the MCARE are given by Table 1. 

Table 1 
The solutions of MCARE for different γ. 

γ P 
278.2956 -7.6472 13.6618 
-7.6472 13.4040 -0.2914 γmin 

13.6618 -0.2914 1.0330 
9.9723 -.00019 0.1562 
-0.0019 9.2368 0.1387 10 γmin 
0.1562 0.1387 0.0562 
9.5114 0.0018 0.1435 
0.0018 9.0144 0.1332 100 γmin 
0.1435 0.1332 0.0529 

In the same time a classical LQ design was made too (without γ), [6]. The obtained 
solution was: 

⎟
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0525.01327.00.1422
1327.09907.80.0021
1422.00.0021   9.4641    

P   (12) 

One can see that this is very similar to the case of disturbance rejection LQ for 100 
γmin. The so obtained result demonstrates once again the theory, that for big values 
of γ, the disturbance rejection LQ method becomes again a classical LQ problem. 

The illustration of this affirmation is presented applying step disturbances on the 
3TS. The change of the liquid level (in meters) was simulated in time (seconds). 

In Figure 2 the biggest possible change of h2 is presented for each γ-case 
considered, over each disturbance effect (us13, us32, ug2, ue1, ue2, ue3). 

It can be seen that for γmin = G = 1 the biggest disturbance can be applied for us13, 
ue1, ue3 (for Tank 1 and Tank 3). However for us32, ug2, ue2 the effect of the 
disturbances were minimized on h2, as these values are the characteristic 
disturbances for Tank 2 (and now the disturbance was considered over h2). More 
details can be obtained from [6]. 
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From the first output (h1) point of view, similar results were obtained, but now the 
disturbances are maximized for us32, ug2, ue2, ue3 and are minimized for us13, ue1 
(Figure 4). 

Figure 3 presents the results of simulating the effect of step disturbance over a 
classical LQ problem, [6]. It can be seen that the results in Figure 2 (for 100 γmin 
(G=100)) and Figure 3 are the same. 

The same conclusion can be seen comparing the results of Figure 4 with Figure 5. 

 
Figure 2 

Disturbance rejection over h2 for different γ values in time (G-multiple of γmin). 

 

Figure 3 
Disturbance rejection over h2 in time for classical LQ 
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Figure 4 
Disturbance rejection over h1 for different γ values in time (G-multiple of γmin) 

 
Figure 5 

Disturbance rejection over h1 in time for classical LQ 

Conclusions 

In this paper the disturbance rejection LQ control was applied on the 3TS and the 
obtained results were compared with those obtained by the classical LQ method. 
The superiority of the minimax control was demonstrated, namely that for big 
weighting values obtained for the worst case disturbance, the disturbance rejection 
LQ method becomes a classical LQ problem. 
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