
Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 - 499 -

Ecological Modelling with Cellular Automaton
Software Implemented in GPU System

Éva Hajnal and Tamás Bajzát
Óbuda University, Alba Regia University Center
H-8000 Hungary Székesfehérvár Budai út 45, Hungary, hajnal.eva@arek.uni-
obuda.hu bajzat.tamas@gmail.com

Abstract: A modelling software, based on the cell automaton principle, was developed
to help the investigation of the abundance distribution, and the change of species
number in freshwater phytoplankton communities. The task is computationally
intensive, but due to the data parallel computing model, it is conveniently implemented
in PC by the up-to-date GPU cards. In the development we have used a re-thought,
and upgraded successor of the Nvidia G80 architecture, Fermi-GF104 architecture,
and the associated CUDA programming environment in C/C++ language
environment. The performance of the modelling software was tested and the CGMA
(compute to global memory access) ratio was determined. It was ascertained that few
magnitude speedup can be reached using the GPU systems supplemented the
traditional serial data processing way of CPU-s.

Keywords: cell automaton, GPU, massive parallel algoriths, ecological model

1. Introduction
The behaviour of ecosystems is deeply examined for centuries, but only few
studies have been published about communities in which the number of species is
large, but from the aspect of interspecific interactions seem to be quasi-neutral.
Such community is the phytoplankton, with quantity and species composition it
reflects the state of the freshwater and the see, and it is one of the main
participants in the oxygen production of the Earth. Our aim is to supplement our
results in database analysis of the phytoplankton of different lakes and our
mathematical findings, and developing software for modelling the abundance
distribution and the species number changes of it. We decided to implement our
software on the base of the cellular automaton modelling principle.

Cellular automaton (later CA) models have been used for nearly 25 years, and
their theoretical bases are thoroughly clarified [1, 3], but till now they seem to be
promising modelling methods. These models work on the level of entities, and try
to create complex phenomena. In this model the state of cells and their behaviour

É. Hajnal et al. Ecological Modelling with Cellular Automaton Software Implemented in GPU System

 - 500 -

depends on the local or wider neighbourhood and from their own previous state.
This model generally makes possible the demonstration and visualization of the
formation of temporal and spatial patterns but only in few cases facilitates
quantitative approaches [3, 4]. Their application could be the first step in scientific
understanding, which with calculations by simply rules creates phenomena, thus
preceding the rigorous mathematical and physical models [3].

Against the previously mentioned advantages, there are some disadvantages of the
method, namely it is a computationally intensive task with a large number of
operations caused by the large number of data elements and the large number of
iterations. Making a compromise, the traditional CA models used quite small cell
lattice, two-state cells, and the cell state transitions were calculated with bitwise
operations. Contrary of its simplicity, these CA models were effective to
demonstrate a wide range of phenomena, such as angiogenesis [3], urbanization
[2], heat conduction in fluids, signal processing in the heart [3] etc. The
importance of the method inspired the development of a cell automaton parallel
computer with a multiprocessor, in which the cell transition rules were
programmable [1]. This computer worked with floating point operations in the cell
lattice.

The modern GPU systems, with affordable cost can execute high performance
scientific computing on personal computers, and the good price per performance
ratio makes possible the researchers with restricted resources to use them [4]. The
application of GPU-s encouraged software engineers to revive CA models in a
modern architecture with enlarged functionality. The enlargement of the cell
lattice and the number of iterations, the possibility of computing with complicated
cell transition rules are guaranteed by this technical background. Moreover, the
floating point operations became faster, and in the transition rules we can take into
account not only the local neighbours, but distant cells with proportions of the
distance, furthermore cells can move in the cell space.

Our aim is to implement a model, where the number of species (n>100) is large,
the abundance of the species can differ in few magnitude, but the interaction
between the species is restricted to the competition for the nutrients. [8] In this
model each species has special own reproductive, death and settling rate and these
rates are changing stochastically in time [6].

Today’s graphics cards in computing performance manifoldingly prevail over
CPUs. Since 2007, from the appearance of the Nvidia G80 type chip, they can be
programmable to general computing tasks [5, 10, 11]. This was the first card,
which worked on newly developed general processing units instead of the special
vertex and pixel shader. These new processors can be interpreted as simply, scalar
ALU-s which execute the same simple instructions parallel on each data of the
input stream thus creating the output stream. This single instruction multiple
thread (SIMT) architecture results in giant computing performance.

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 - 501 -

Until the CUDA platform was not released, the programmers had to write shader
programs to use the graphics card’s performance for their own general algorithms.
A shader program just could work with special data structures, and it had a special
programming technique, because a conventional shader program is used in the
graphics pipeline. However, it had a great parallel performance, although the
programming was complex and problematic.

In 2007 the Nvidia released the CUDA C platform, and it changed our software
developing aspect. It was provided for programming the CUDA capable GPUs in
C programming language with only few constraints. These constraints derive from
the architecture, and computing model differences between the CPUs and GPUs.

Furthermore, among others, the Compute Unified Device Architecture (CUDA)
makes possible programming this device on high level programming languages
such as C or C++. This work only needs the knowledge of parallel programming
paradigms [7,9], and the advantage is the instruction execution on different, “C”
type data structures. The main functional parts of a CUDA program help co
working of the CPU and GPU. The first step is the memory allocation on the
graphics device, which is followed by the data load onto the allocated memory
blocks. After this preparation the data processing on the GPU begins. When the
GPU code block is finished, the data have to be loaded onto the system memory,
for further process on CPU. According to this program structure [10, 11], the
available instructions could be grouped into three based on processing and calling.
The host code is executed on the CPU. This is a clear C/C++ code without any
constraints. Its responsibility is the arrangement of the GPU. The kernel code is
called by the CPU but executed on the GPU, and the device code is callable from
the kernel code, and its functions are executed on the GPU.

2. Algorithm and Implementation
In the CUDA programming model the graphics card plays the role of a
coprocessor, which helps data parallel processing, and in this work it is supported
by its own DRAM memory. Processing performance may be enhanced
considerably with CA algorithms in which the data matrices are used in data
storage and their simply cell transition rules, exactly match the computing and
hardware possibilities. Its performance may be further enhanced by the skilled
usage of GPU cards three or four level special memory model.

2.1. Rules of the CA Model
The rules are executed in three phases (Fig. 1). Their first and second stages deal
with empty cells and the third works on the “living” cells. The first phase
simulates the settling of different species. Each species has an own settling

É. Hajnal et al. Ecological Modelling with Cellular Automaton Software Implemented in GPU System

 - 502 -

possibility value (Ps), and if a randomly generated possibility value of a randomly
selected species remain below this Ps, an individual of this species can settle into
an empty place of the cell lattice (Fig 1/B). The second phase simulates the
reproduction with generating a child into an empty cell. This reproduction occurs
with random possibility according to the reproductive rates of each species by the
random order of the neighbourhood. Each species has two reproductive rates, first
determines the base reproduction (Pr1, Pr2) and the second determines the
reproduction under favourable conditions (Fig 1/C). The length of the favourable
period is also a species specific feature. The third phase deals with the age and
death. Each cell’s age is increasing in every cell lattice cycle, and the cell dies,
when it reaches the species specific lifetime (k).

Figure 1: The rules of the CA modelling software. A, The cell lattice may contain large number of
cell types, each of them have an ordinal number, and probability attributes for settling, reproduction
and death. B. A random settling into an empty place in the cell lattice. C, The cells may reproduce

themselves into a neighbouring empty place. D. The cells die when their lifetimes reach the number of
reproductive cycle targeted by the k value.

2.2. The Structure of the CA Software
Our CA modelling software works on a cell lattice, which logical representation is
a two dimensional data matrix. According to the data processing ability of the
device it is one dimensional data vector. This lattice is loaded with cells by
different distributional patterns, and the simulation calculates the next states by
cell state transition rules with the required number of iterations. Random samples
are taken out during the simulation in the required steps of iteration. The
summarized results of the samples are exported into MS-SQL database. The GPU
module is responsible for the simulations.

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 - 503 -

A cell of the lattice, which is targeted with the modelling software defined as a
structure, because this type is also favourable by the ANSI C, consequently, it is
available in CUDA C functions without any restrictions. The advantage of this
type is the same and common variable types in GPU and CPU code. The most
important data of the structure are the species identity code, the actual and the
maximal age of the cell, the two types of reproductive rate, settling rate,
neighbours indices, number of neighbours, and a pointer to this data structure if
the cell is alive.

Cell and Cell Factory Class

The cell space class contains the distribution and rules objects and the one
dimensional array for the cell storage. At the beginning this data block is uploaded
with cells by the distribution class, and the simulation is executed by the rule
object with the required number of iterations.

The cell factory class contains the species descriptions, imports them from a file,
and creates cells by the requests. This object is able to export the data of the cells,
and its functions are used also by the statistical module.

Rules Class

The rules of the software are inherited from a common basic rule class. It has
functions for the execution of cell transition rules in the existence of GPU and in
absence of it, on CPU. These functions are called by the cell lattice object. By the
redefinition of this basic class, whatever rules can be applicable. This algorithm
formally calculates the same operations on all cells, by this means reduces the
program control instructions, and makes possible the threads to execute the same
instructions.

Distributions Class

The investigations of the distribution patterns of real communities showed, that it
is not exact enough to approximate the distribution with a single classical
distribution function. This CA model uses the resultant of two types of distribution
functions (broken logarithmic, lognormal or smooth distributions). The different
distributions are also inherited from a common basic class, and the program can be
enhanced with new types of abundance distributions. This object calculates the
number of each species according to the available distribution function and these
cells are settled into the cell lattice into random positions by the cell factory. In the
performance tests only one logarithmic distribution was used with a changeable K
ratio of a geometric series.

É. Hajnal et al. Ecological Modelling with Cellular Automaton Software Implemented in GPU System

 - 504 -

Figure 2: The modules of the CA software and the measurement points for the performance
testing

Statistics Class

Sampling is accomplished uniformly in the required iteration steps. It means the
random generation of the required number of indices from the cell lattice,
histogram is calculated and data are exported into an MS-SQL database.
Advanced statistical calculations can be executed with special software after all.

2.3. Performance Measurement
For the performance testing we settled two inner time measurement points into the
software (Fig. 2). The first inner point is at the beginning of the GPU module, and
the second is at the end of that module. So we can measure the processing time of
the three basic module of the program, the input and initialization block, the
simulation block, and the statistical block. For rigorous time measurements the
Windows API functions were used.

3. Results
The aim of the first measurements was to verify, which program block
determinates mainly the performance of the program execution (Fig. 3). The
simulation module is the main block from the aspect of time usage, and the
execution time of this block depends basically on the program parameters.

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 - 505 -

Figure 3: Performance measurements on changing the number of iterations in GPU(execution
times in milliseconds, number of species=10, size of cell lattice=10 000) and the execution time

dependence from parameters in each block

The second measurement (Fig. 4) is the examination of the execution time
dependence on the size of the cell lattice. In this attempt the number of species
(10) and the number of iterations (1000) are constant and the cell lattice’s size is
32x32, 64x64, 256x256, and the experience is similar. The difference in speed is
caused by the GPU module, which is the main part of the program from the aspect
of the total execution time. The trend of execution time changing rises.

The summarized efficiency comparison on Figure 5 shows the relative advantage
of the parallel GPU execution to the serial CPU execution.

Number of species:

Number of iterations:

Number of cells:

CUDA CPU CUDA CPU CUDA CPU CUDA CPU
Cellspace
creation(ms): 47 47 187 187 764 749 3026 2995
Executing of the
simulation(ms): 1092 3885 1154 7613 1529 19454 1820 198262
Writing the result into
a file(ms): 78 78 78 78 78 78 78 78

Total(ms): 1217 4010 1419 7878 2371 20281 4924 201335

65536

10

1000

1024 4096 16384

Figure 4: Performance measurements on changing the size of the cell lattice (execution times in

milliseconds) comparing a GPU system with a CPU system

É. Hajnal et al. Ecological Modelling with Cellular Automaton Software Implemented in GPU System

 - 506 -

Figure 5: Summarized relative execution time comparison of the software between CPU and
GPU systems. (Species number=10, number of iteration=10000)

The calculated Compute to Global Memory Access (CGMA) ratio is a good
indicator of the parallel algorithm’s speedup. In the GPU module it decreased
almost until 0, because in the software, the access to global memory is restricted to
the data export, if the local memory of the GPU card is full, and to the export of
statistical data. The instructions in GPU simulation module can operate mostly
with the device own memory types.

Conclusions

A CA model was developed for the investigation of a real ecological system,
which is in our focus [6, 8], and the software performance was tested [12]. The
results (Fig. 5) show that serial data process by CPU is commensurable with
parallel process of the GPU at small number of iteration due to the enhanced
instruction set, and caching. But with the enlargement of the computing task, the
GPU prevails the CPU with some orders of magnitude. Because the 10 fold
enlargement of iterations is a real 10 fold enlargement of the instruction number
from the aspect of the GPU, but 10*n (n is the number of the cells, here ~10000)
from the aspect of the CPU. On the testing personal computer the lowest
computational task does not cause trouble to CPU systems, but at larger cell lattice
and large number of iterations there is some order of magnitude advantage in the
relative speed of the parallel algorithm. This program is expected to execute for
modelling large multitude, and large number of iterations, near the upper level of
the testing dataset. Additionally this program will be executed on a large data
series in batch mode, so the performance of the GPU is really need.

The key of the accessed performance is the software planning, namely the module
structure of the software and the implementation of the modules on the appropriate
device; the high computationally intensive block was implemented on the GPU
but the high I/O intensive block was implemented on the CPU. The local

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 - 507 -

algorithm considerations caused further enhancement of the performance of the
parallel algorithms.

The software needs further development. The statistical block needs some
development for indicating the stability of number of individuals, species in the
cell lattice, with statistical evaluation of the increasing or decreasing living cell
and species number and the system’s entropy.

In summary the low expense parallel programmable devices changes our point of
view. Software engineering for personal computers emphasizes solutions which
were applied on large systems and may change our model choosing decisions, and
facilitates the financially weakly supported theoretical ecological research.

Acknowledgment
We thank Mariann Machata and Balázs Almádi for helpful hints.

References

[1] T. Toffoli, and N. Margolus, Cellular automata machines: a new
environment for modeling. Cambridge, MA: MIT Press. 1987

[2] M. Batty, and Y. Xie , "From cells to cities" Environment and Planning B:
Planning and Design 21 Supplement, s31 – s48 1994

[3] G. B. Ermentrout and L. Edelstein-Keshet, Cellular automata approaches to
biological modeling, Journal of Theoretical Biology Vol. 160, pp. 97-133,
1993

[4] J. Tran, D. Jordan and D. Luebke, New challenges for cellular automata
simulation on the GPU - SIGGRAPH, Los Angeles. ACM. Poster, 2004 –
Citeseer

[5] (D. B. Kirk, W.W. Hwu, Programming Massively Parallel Processors –
Elsevier,Burlington, 2010

[6] Padisák J, Hajnal É, Krienitz L, Lakner J, Üveges V, Rarity, ecological
memory, rate of floral change in phytoplankton – and the mystery of the
Red Cock. HYDROBIOLOGIA 653: pp. 45-64. 2010

[7] R. Nagy, and M. Seebauer, Parallel Computing in the Electrical
Engineering Curriculum, ITHET 2002 3rd International Conference on
Information Technology Based Higher Education and Training, 2002

[8] J. Lakner, É. Hajnal., G. Lakner and J. Padisák, Statistical mathematical
modelling for multitude number estimation of rare and frequent species.
Ecological Modelling under submission

[9] M. Sarnovský, P. Butka and J. Paralič, ”Grid-based Support for Different
Text Mining Tasks” Acta Polytechnica Hungarica Journal of Applied
Sciences, vol. 6, Issue Number 4, pp. 5-25, 2009

É. Hajnal et al. Ecological Modelling with Cellular Automaton Software Implemented in GPU System

 - 508 -

[10] NVIDIA CUDA C Programming
Guide,http://developer.download.nvidia.com/compute/DevZone/docs/html/
C/doc/CUDA_C_Programming_Guide.pdf , 20.10.2011.

[11] CUDA API REFERENCE MANUAL,
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/
CUDA_Toolkit_Reference_Manual.pdf, 20.10.2011

[12] Bajzat, T.; Hajnal, E., "Cell Automaton Modelling Algorithms:
Implementation and Testing in GPU Systems," Intelligent Engineering
Systems (INES), 2011 15th IEEE International Conference on , vol., no.,
pp.177-181, 23-25 June 2011

