
Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 – 161 –

RTOS Program Models Used in Embedded
Systems

József Kopják, Dr. János Kovács
Kandó Kálmán Faculty of Electrical Engineering
Óbuda University, Budapest, Hungary
kopjak.jozsef@kvk.uni-obuda.hu

Faculty of Engineering Sciences
Széchenyi István University, Győr, Hungary
kovacs@sze.hu

Abstract: The paper present and compare some real-time control program models
used by programmers programming in embedded systems. The paper do not
demonstrate all programming models, only the most important variations based on
writer's opinion. The writer tried to show the advantages and disadvantages of each
programming models discussed in article. The paper begins with traditional models
like sequential model, cooperative multitasking and continues with timed cooperative
model and finish with event-driven model.

Keywords: cooperative multitasking; timed cooperative model keyword1; event-driven
model; real-time

1 Introduction

The improvement of microcontrollers using in embedded systems is very strong.
Some performances of microcontrollers are on same level like in personal
computers. The tasks of microcontrollers do not stop on control functions. With
higher computing speed is possible to satiate user demands like to have a
graphical user interface on LCD with touch panel (intelligent dish washer) or to
create a connection with server (intelligent power meter). To resolve these new
problems programmers needs to have new program modeling knowledge.

J. Kopják et al. RTOS Program Models Used in Embedded Systems

 – 162 –

2 Real-Time Systems

Non real-time system are usually using in office technologies. In non real-time
systems incoming events followed each other in time in a same priority level are
not served in a queue followed each other. In these systems are known the average
of processing time of events, but we do not know the maximum time of answer of
occurred event.[1]

Real-time control is very important in solutions using in industrial and medical
environment. Every event has own priority in real-time system. Consecutively
becoming events in a same priority level are served in one after the other. The
maximum of answer time of incoming event is known and defined.

A critical aspect of real-time systems is how time itself is handled. The design of a
real-time system must identify the timing requirements of the system and ensure
that the system performance is both correct and timely. The three types of time
constraints on computation are: hard, soft, firm [2].

3 Sequential Programming Model

Sequential programming models are used in industrial solutions usually.
Sequential programming model is named linear programming model too. These
programs are composed from four software component: initialization, reading
status of the inputs, calculation or processing, refreshing values of the outputs.
Figure 1 illustrates the simplified flow chart of program based on sequential
programming model.

Figure 1
Simplified flow chart of program based on sequential programing model

The advantage of sequential programming model is the design of program is very
similar to classical logical circuit design method. Simultaneously (in time) reading
of all inputs and writing of all outputs exclude the hazard known in logical
circuits.

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 – 163 –

The disadvantage of the model is in case of writing of complex programs the
source code will contain lots of if-else control structures and therefore will be
incomprehensible. Other disadvantage of the model is the poor utilization of
processor. The program permanently recalculate the values of outputs, regardless
of there is any change on inputs. The program based on such a model is still
running, therefore uses up the entire CPU time. The reaction time of program
increases with the program complexity due to constant recalculations.

4 Cooperative Multitasking

In cooperative multitask tasks are working together with each other. The tasks are
simple functions without input parameters and return value. The main program
first initializes the peripheral devices, after the initialization the program calls the
task functions in loop. Figure 2 illustrate the simplified flow chart of program
based on multitask programming model.

Figure 2
Simplified flow chart of program based on multitask programing model

Source code written in cooperative multitask model is more transparent than the
codes written in sequential method. The tasks can be easily separated, each task
have different job. These tasks are in different functions, and these functions are
located in different source files usually. In case the task-functions are located in
different source files the program developers can be work together easily, because
they don't interfere with each others work. Each developer has to modify only
their own files, and don't need to change content of files created by other
developers.

Following piece of C-language source code represents the main loop responsible
for calling the task functions.

J. Kopják et al. RTOS Program Models Used in Embedded Systems

 – 164 –

int main (void)
{
 vInitSystem();// Initialization of peripherals
 while(1) // Infinitive function calling loop
 {
 vTask1(); // Calling task function named vTask1
 vTask2(); // Calling task function named vTask2
 vTask3(); // Calling task function named vTask3
 }
}

Developing source code in cooperative multitask model required more preparatory
planning time than sequential solution. The designer has to divide the whole
program-task to small individual working tasks in a first phase of development.
Each individual working task is communicating with each other on global
variables or with another name: via mailboxes. The cooperating task functions
usually read its inputs values at the beginning and writing they output values at
end of each running sequence. The program scans its inputs and updates its
outputs values several times during a one circle in the main loop.

The task should complete them running sequence as soon as possible to got short
program response time. The task should not use blocking or waiting loops. Using
blocking loops would drastic incise the response time of running system. Some
blocking loops examples: Waiting for releasing a push button or waiting for an
UART peripheral register flag. The tasks have to remember the current state of
running and return back to the calling function in case when a resource is not
available.

The task functions should be structured based on state machine model due to lack
of a blocking waits. In state machine model the functions are using static local
variables to store them next states. The backbone of each task function is a switch-
case structure. The task first examines the value of the state description variable,
and then jumps to the program code of the state. Following piece of C-language
source code illustrates the body of task function based on state machine model.
void vTask(void)
{
 /* State description variable. Initial state is:
 INIT_STATE */

 static enum { INIT_STATE, STATE1, STATE2, STATE3 }
 xState = INIT_STATE;

 /* Selection of sub-task based on the value of state
 variable */

 switch (xState)
 {
 case INIT_STATE: // Initialization tasks
 /* ... */
 xState = STATE1; // Selection of next state
 break; // End of actual running

 case STATE1: // First task
 /* ... */
 xState = STATE2; // Selection of next state
 break; // End of actual running

 /* ... */

 default: // Protection state:

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 – 165 –

 // Normally the program never gets here.
 xState = INIT_STATE; // Reinitialization of
 // task-function
 }
}

The advantage of cooperative multitask model is the possibility of creation quasi-
parallel multitask system without using preemptive multitask operation system.
The disadvantage of cooperative multitask model is the pretension of good
developer programming skills. The response time of program is depends on the
tasks execution time. The execution time of task is not a constant value, because
every task state has other execution time. The response time of program will be
swinging, but is possible to calculate the fastest and slowest reaction time of
system. The shortest reaction time of system is the sum of fastest running time of
tasks, and the longest response is the sum of slowest running time of tasks.

Another disadvantage of the cooperative multitask is that the program is not able
to manage energy consumption of the processor. The processor runs the code
permanently, it cannot go to energy-efficient mode (sleep or idle), this means the
processor will be have maximum energy consumption.

5 Timed Cooperative Multitasking

The basic cooperative multitask model do not deal with time, it means if
somebody would like to create timed functions or events then the programer must
to create own timer to measure the elapsed time. In timed cooperative multitask
model the tasks do not run always like in classical cooperative multitask model,
only when they blocking or waiting time has expired.

If somebody would like to implement time cooperative multitask model, then he
must create own lightweight kernel to manage the task functions. There is some
known implementation of cooperative multitasking, with other name co-rutins,
like FreeRTOS . FreeRTOS is an open source operating system for embedded
systems written in C language[3]. The kernels, what we found, working with time,
but the time is not the basic element of they kernel model, therefore we design a
own lightweight cooperative multitask kernel.

To demonstrate the difference between classical cooperative multitasking an the
timed cooperative multitasking we made an example program. In our program are
two tasks. The task are running quasi-parallel. The mission of each task is very
simple: Invert one output pin. Next code example written is C language shows the
implementation of these tasks.
/* Task function of task #1*/
void vTask1 (void)
{
 mTurnOnLED(3); // Turn On LED #3 (The task starts his running)
 mToogleLED(1); // Toogle LED #1 (The mission of the task)
 mTurnOffLED(3); // Turn Off LED #3 (The task stops his running)
}

J. Kopják et al. RTOS Program Models Used in Embedded Systems

 – 166 –

/* Task function of task #2*/
void vTask2 (void)
{
 mTurnOnLED(0); // Turn On LED #0 (The task starts his running)
 mToogleLED(2); // Toggle LED #2 (The mission of the task)
 mTurnOffLED(0); // Turn Off LED #0 (The task stops his running)
}

Our initial kernel is very simple. Next code example shows our initial, not timed,
kernel.
/* endless loop */
while (1)
{
 vTask1(); // Call Task1 function
 vTask2(); // Call Task2 function
}

The Figure 3 illustrate the result of program running is simulator. In picture you
can find 4 lines. The line with label “Task #1” is in high level when the task #1 is
running, and is in low level when the task is “no running” state. The line with
label “Task #2” is demonstrate the actual state of the task #2 (the conditions of
high and low level is similar like in previously described line). Line with label
“PIN #1” and line with label “PIN #2” shows the output of Task #1 and Task #2
(toggle LEDs on output pins).You can see in the figure, that the both tasks are
running always in circa half of the processors time.

Figure 3
Result of running program write in traditional cooperative multitask model

To create a timed task calling we need a one timer global timer, who create for as
an continues global time in tick. Operating system usually measure the time in
tick. The tick counter is 16 or 32 bit long unsigned variable, but it can be an 8 bit
counter in very small systems. We used 16 bit wide architecture to test our kernel,
therefor our tick counter is 16 wide too. In this example the timer increase the
value of tick counter in every one millisecond.

We need an array list too, where are the task descriptors. One element of array is a
structure, which represents one task. The descriptor structure has three fields, the

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 – 167 –

pointer of task function, the recall interval in tick and the time stamp of last call.
Next code example shows the declaration of task descriptor structure.
/* Type define: Task Entry structure */
typedef struct
{
 void (*pvTaskPointer) (void); // Poniter of taskfunction
 TICK_TYPE tickRecallInterval; // Recall intervall in tick
 TICK_TYPE tickLastTimeStamp; // Time stamp of last call
} TASK_ENTRY;

Next piece of code shows the list of tasks. The list must be closed with predefined
closing entry where the value of function pointer is NULL. In case when the array
is closed with closing entry the programer do not need to predefine the size of
array list, because the parser part of the program could determinate the size of
given array.
static TASK_ENTRY xTaskList[] =
{
 {vTask1, 3, 0},
 {vTask2, 6, 0},
 {NULL, 0, 0} // End of Task List (closing entry)
};

The kernel first calculates the difference of current time and the time stamp of last
call, and when this value is greater than or equal to tasks recall time then calls the
task function. Next piece of code shows the implementation of kernel.
 /* Local variables */
 TICK_TYPE tickCurrentTime;
 HTASK_ENTRY hTask;
 UBASE_TYPE uxTaskIndex = 0;

 /* endless loop*/
 while (1)
 {
 hTask = &xTaskList[uxTaskIndex++]; // Get handle of task from task list
 if(hTask->pvTaskPointer != NULL)
 {
 /* If task entry is not closing entry: */
 tickCurrentTime = tickGetCurrentTime(); // Get current time in tick
 if ((tickCurrentTime - hTask->tickLastTimeStamp) >= hTask->tickRecallInterval)
 {
 /* If task time was expired, then task must be called: */
 hTask->pvTaskPointer(); // Call task function
 hTask->tickLastTimeStamp = tickCurrentTime; // Write time stamp of last call
 }
 }
 else
 {
 uxTaskIndex = 0; // Restart loop counter
 }
 }

The Figure 4 illustrate the result of program running is simulator. In picture you
can find 4 lines. The meaning of the lines are same like in Figure 3.You can see in
the figure, that the both tasks are running only when they blocking time is expired.

J. Kopják et al. RTOS Program Models Used in Embedded Systems

 – 168 –

Figure 4
Result of timed cooperated multitasking

6 Event-driven Programming Model

Before analyzing the event-driven programming model let's look at the concept of
the event. The event is an occurrence (incidence), which may change the status an
object [4].The events are signals from the outside of world in generally. Events are
describing dynamic changes of inputs. Events can be external -hardware- events
such as a button press or a tank becomes full or internal -software- events such as
queue is full or semaphore was taken.

The objects being informed about events through messages. The message in
complex, distributed system can be objects too, such as a communications packet
(MODBUS message or TCP / IP packet). In single-processor systems we are using
a simple function calls to transmit the messages.

In traditional event-driven model based programs are only passive objects. The
objects recalculates they output values do the effect of change they input values.
The event-driven program runs only when the input values are changing. The
response time of program depend on the number of changing input values in same
time, and do not depend on the controlled network complexity.

The traditional event-driven system consists the following actors:

Interrupt service routines (ISR) - The processors interrupt periphery calls the
interrupt service routines in case of external or internal interrupt event. Hardware
interrupt can be a change of the value of input pin (Interrupt On Change),
incoming data on communication port or end of data transmission. Internal
hardware event can be a timer overflow or end of analog-digital conversion. The
interrupt service routines create event-telegrams, which are posted to event queues
by ISRs.

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 – 169 –

Event-telegraphs - The event-data structures consist of a minimum of two parts:
The signal of the event conveys the type of the occurrence, and event parameters
convey the quantitative information about the occurrence [5]. Following piece of
C-language source code illustrates example for event-telegraph structure.
typedef struct EventTag
{
 unsigned int uiEventID; // Event ID
 unsigned int uiParam; // Event parameter
} Event;

Event queue - Event queue is a list (first in first out type list) of event telegraphs.
The interrupt service routines put the event telegraphs to the end of queue and the
event handler loop gets events from queue. Care should be taken when
implementing the event queue because is shared resource. The event telegraphs
arrive to the queue asynchronously. All operation with event queue should be
made in critical section; exclude multiple writes, or read and write, in queue in
same time.

Event message processing loop - The event message processing loop located in
the main program. The event message processing loop is an infinite loop. The loop
first tries to get message for event queue. If there is a waiting message in the
queue, then the loop process it based on message ID and message parameters. If
there is no message waiting to be processed, then the loop puts the processor to
the power saving mode. The interrupts will be wake up the processor from power-
saving mode.

Not only the interrupt service routines can put events to the queue, but the event
processing loop too. It can be happens the actual event processing ends with
generation of new event. In such cases, the generated event is added to the end of
the queue of events. Figure 5 illustrates the traditional event-driven program
structure.

Figure 5
Traditional event-driven program structure

Event-driven systems require a distinctly different way of thinking than traditional
sequential programs [5]. The event-driver program do not wait for an external
event, the program react to events [6]. The program must be designed in if-then
conditions, for example: if the set pin of set-reset flip-flop change to true, then the

J. Kopják et al. RTOS Program Models Used in Embedded Systems

 – 170 –

output of flip-flop must be set to true; if the reset pin of set-reset flip-flop change
to true, then the output of flip-flop must be set to false.

The structure of event processing loop is similar to the functions developed basis
on state-machine model. The core of loop is an switch-case structure. The switch
tag jumps to the selected function description based on incoming event ID.
Following piece of C-language sample code illustrates the body of event
processing loop.
while(1)
{
 /* Getting event from event queue */
 if(xQueueReceive(xEventQueue, &xReceivedEvent, 0)
 == pdPASS)
 { // On successful reception:
 /* Jump to selected task based on message ID */
 switch (xReceivedEvent.uiEventID)
 {
 case BUTTON: // The button has bean sent
 /* ... */ // the message
 break; // End of message processing

 case TIMER: // The timer has bean sent
 /* ... */ // the message
 break; // End of message processing
 }
 else // There is no event waiting to be processed:
 {
 Idle(); // The processor goes to power saving mode
 }
}

The advantage of program based on traditional event-driven model is that the
model includes the automatic control of processor power consumption. If the
message comes when the event queue is empty the response time of program is
the message processing plus the answer generation time. The disadvantage is that
the program can not rank events based on their importance and is not suitable to
create modular program.

Conclusions

All programming models presented here have their own reason for existence. For
smaller tasks may be useful to use design models presented at the beginning of the
article, for complex systems are better solutions described in the second half of the
article. Complex models are using more processor for administrative tasks instead
of real problem, thereby reducing the effectiveness of the processor. On battery
powered solutions should be used solution where the models automatically
manage the processors energy consumption.

References

[1] József Kopják – Dr. János Kovács, Event-driven control program models
running on embedded systems, 2011

[2] Bruce Powel Douglass, Real-Time UML: developing efficient objects for
embedded systems, 1998

[3] Richard Barry, Using The FreeRTOS Real Time Kernel, 2009

Óbuda University e‐Bulletin Vol. 2, No. 1, 2011

 – 171 –

[4] Angster Erzsébet, Az Objektumorientált tervezés és programozás alapjai, 1997

[5] Miro Samek, Practical UML Statecharts in C/C++, Second Edition, 2009

[6] Dr. Kondorosi Károly, Dr. László Zoltán, Dr. Szirmay-Kalos László,
Objektum-Orientált Szoftverfejlesztés, 2003

