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Abstract: The paper discusses the generalization capability of two hidden layer 
neural networks based on various fuzzy operators introduced earlier by the authors 
as Fuzzy Flip-Flop based Neural Networks (FNNs), in comparison with standard 
networks  tansig function based, MATLAB Neural Network Toolbox in the frame of a 
simple function approximation problem. Various fuzzy neurons, one of them based on 
new fuzzy intersection and union pair, and two other selected well known fuzzy 
operators (Łukasiewicz and Dombi operators) combined with standard negation had 
been proposed as suitable for the construction of novel FNNs. The experimental 
results show that these FNNs provide rather good generalization performance, with 
far better mathematical stability than the standardneural networks and are more 
suitable to avoid overfitting in the case of test data containing noisy items in the form 
of outliers. 
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1 Introduction 

Artificial neural networks and fuzzy logic systems share common features and 
techniques in the context of approximate reasoning. The main idea is using the 
high flexibility of neural networks produced by learning, in order to tune the 
membership functions used in fuzzy control. The approximate reasoning 
capability, transparency and interpretability of fuzzy sets, the learning capabilities 
and the property of auto-adaptability of neural networks, furthermore the optimal 
structure approximation properties of evolutionary, especially bacterial algorithms 
were developed with the aim to deal with problems which were hard to solve 
using traditional techniques. 

In the years 1990-92 papers by D. Dubois, M. Grabisch and H. Prade [5], B. 
Kosko [16], furthermore Wang and Mendel [23], [24] proved almost 
simultaneously that fuzzy systems are universal approximators. In 1997 E. P. 
Klement, L. T. Kóczy and B. Moser [14] argued that fuzzy systems can only be 
universal approximators in a rather restricted sense, because of the limits set by 
computational complexity. The authors also exemplified the main approaches to 
realize the idea of controlling real world processes by means of linguistic 
variables.  

In the field of artificial neural networks (connectionist models, parallel distributed 
processing systems and neuromorphic systems) mathematical function 
approximation using input-output data pairs from a set of examples is the object of 
study in different applications such as applied mathematics, and computer science. 
The paper of Hornik, Stinchcombe and White [11], established that standard 
multilayer feedforward networks with a single hidden layer constitute a class of 
universal approximators. They gave a general investigation of the capabilities and 
properties of multilayer feedforward networks, without any suggestion to the 
number of hidden units needed to achieve a given accuracy of approximation. The 
function approximation capability of multilayered neural networks was studied in 
detail by Ciuca [2], Cybenko [3], Funahashi [6], Hecht-Nielsen [10] and Ito [13]. 
They proved that any continuous function can be approximated by a three-layered 
feedforward network with hidden sigmoid units and one linear output unit. The 
use of four-layered (that have two sigmoid unit layers) neural network as universal 
approximators of continuous functions have been investigated by Funahashi [6], 
Girosi and Poggio [9] and Hecht-Nielsen [10]. Kurkova [17] studied also 
multilayer feedforward networks with sigmoid activation function approximation 
capabilities, analyzing also their computational complexity issues. Blum and Li 
showed [1] that four-layered feedforward networks with two hidden layers of semi 
linear units and with a single linear output unit are universal approximators. In 
[12] Hornik generalized the set of activation functions. He concluded that the 
neural networks approximation capability is very strongly dependent on the 
multilayer feedforward architecture, and less on the choice of the activation 
function. Furthermore, the number of hidden units exponentially depends on the 
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dimension of the approximated function. Unknown function approximation or 
model approximation is needed in many areas, and has been widely investigated.  

Our goal was to develop well-performing fuzzy neural networks with a 
satisfactory approximation of unknown datasets, without prior knowledge of the 
system properties. In our simulations we checked the generalization capability of 
the FNNs, by adding noise in the form of outlier points to the training data. In the 
next we will present how standard NNs do not recognize properly the original 
trend (function) represented by the data, and how they learn outlier data points 
similarly to the original data, resulting in overfitting. This means poor 
generalization, and lack of proper interpolation. 

This paper is organized as follows. After the Introduction, in Section 2 the 
sigmoid function generators derived from fuzzy J-K and D flip-flops are briefly 
reviewed. The suggested neural network is four-layered with hidden nodes defined 
by fuzzy flip-flop neurons (as sigmoid function generators) and a linear output 
node. Comparison of various FNNs and the standard tansig neural network 
generalization capability is presented in Section 3. As a somewhat surprising 
result is proposed that the FNNs have a more robust behaviour than the tansig 
based simulator. The FNNs aim at the reduction of overfitting, leading to much 
better generalization abilities of the network. Finally, some concluding remarks 
are given. 

2 Multilayer Perceptrons Based on Fuzzy Flip-Flops 

2.1 Fuzzy J-K and D Flip-Flops (F3s) Neurons 

2.1.1 Fuzzy Flip-Flop Neurons Derived From Fuzzy J-K Flip-Flops 

The unified formula of the fuzzy J-K flip-flop was expressed as follows [22]: 

( ) ( ) ( )outQ J K J Q K Q= ∨ ∧ ∨ ∧ ∨       (1) 

The output state outQ  of a J-K flip-flop is characterized as a function of both the 
present state ( )Q t  and the two present inputs ( )J t  and ( )K t . In the next, J, K and 
Q will be used instead of ( )J t , ( )K t  and ( )Q t , respectively, as simplified 

notations. The over bar denotes the standard negation (e.g. 1K K= − ); 
furthermore and∧ ∨  denote fuzzy operations (t-norm and t-conorm, labeled in the 
next as i and u). [ ], , , 0,1outJ K Q Q ∈ . 



R. Lovassy et al.  Fuzzy Neural Networks as “Good” Function Approximators 

 – 176 – 

In our previous work [19] we proposed the construction of a neuron unit, a 
combinational sigmoid generator derived from arbitrary fuzzy J-K flip-flop where 
Q  is fed back to K and (old) Q is fixed. 

In this approach, the output of fuzzy J-K flip-flop neuron depends on the value of 
Qfix and input values of J. Substituting K Q=  (1 - K = Q) in the unified formula 
of the fuzzy J-K flip-flop (eq. 1), for a fix Q value, the characteristic equation of 
fuzzy J-K flip-flop neuron is 

( )( )fix fix fix fix( ) ( ) 1outQ J  u Q  i J  u Q  i Q  u Q= −     (2) 

2.1.2 Fuzzy Flip-Flop Neurons Derived From Fuzzy D Flip-Flops 

In [19] we proposed the construction of fuzzy D flip-flop neuron which is a 
combinational sigmoid generator. This unit is derived from arbitrary fuzzy J-K 
flip-flop by connecting the inputs of fuzzy J-K flip-flop in a particular way, 
namely by applying an inverter in the connection of the input J to K. Starting from 
the fundamental equation of fuzzy J-K flip-flop and substituting K J=  in 
equation (1) and letting D = J for a fix Q value, the characteristic equation of 
fuzzy D flip-flop neuron is 

( )( )fix fix( ) ( ) 1outQ D u D  i D u Q  i D u Q= −     (3) 

Among others, a new pair of conjunction and disjunction, the Trigonometric t-
norm and t-conorm were introduced in [8]. These new fuzzy operations, 
furthermore the well known Dombi and Łukasiewicz norms combined with the 
standard negation were applied for forming fuzzy neurons according to 2.1.1 and 
2.1.2. Table I shows the above mentioned two well known fuzzy operations, and 
the new triangular t-norm and t-conorm expressions. 

2.2 Neural Networks Based on Fuzzy Flip-Flops 

We have proposed an FNN network as a four-layered Multilayer Perceptron 
(MLP) with hidden nodes defined by fuzzy flip-flop neurons (as sigmoid function 
generators) and a linear output node. This network type presented rather good 
function approximation properties. In our approach the weighted input values 
were connected to inputs J and K of the new fuzzy flip-flop neuron based on a pair 
of t-norm and t-conorm, having quasi sigmoid transfer characteristics. The output 
signal is then computed as the weighted sum of the input signals transformed by 
the transfer function. 
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The deployment of the Levenberg-Marquardt algorithm (LM) [21] and of the 
Bacterial Memetic Algorithm with Modified Operator Execution Order Algorithm 
(BMAM) [7] was proposed and applied for FNNs variables optimization and 
training [18] as follows. 

During the execution of the algorithm each individual is selected one by one, and 
20 generations of 5 individuals with 5 clones are chosen to obtain the best fitting 
variable values, with the lowest performance. The same part or parts are selected 
randomly from the clones and mutated. The LM method nested into the 
evolutionary algorithm is applied for 5 times for each clone. Several tests have 
shown that it is enough to run 3 to 5 of LM iterations per mutation to improve the 
performance of the whole algorithm. The best clone is selected and transferred 
with its all parts to the other clones. Choosing-mutation-LM-selection-transfer 
cycle is repeated until all the parts are mutated, improved and tested. The best 
individual is remaining in the population, all other clones are deleted. This 
procedure is repeated until all the individuals are taking part in the modified 
bacterial mutation. As a second main step, LM is applied 7 times for each 
individual executing several LM cycles during the bacterial mutation after each 
mutation step. In the applied algorithm the gene transfer operation is completely 
excluded. 

TABLE I. 
SELECTED T-NORMS AND T-CONORMS 

Fuzzy Operation t-norm i (x, y) 

Dombi (D) [4] 

11/

1 11 1 1
x y

−
⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟+ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

ααα

 

Trigonometric (Trig) [8] 
2 arcsin sin sin

2 2
x yπ π

π
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Łukasiewicz (L) [15] max(0, 1)x y+ −  

Fuzzy Operation t-conorm u (x, y) 

Dombi (D) 

11/

1 11 1 1
x y
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Trigonometric (Trig) 
2 arccos cos cos
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Łukasiewicz (L) min(1, )x y+  
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3 Results on the Generalization Capability of FNNs 
Compared to Standard Simulated Neural Networks 

The following two dimensional test function was investigated among others: 

( )
2

51 50
2 1 2

2

, cos arctan 1 sin
10

rx rf x x e
x

−⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 

[ ]2 2
1 2 1 2, , 20,20r x x x x= + ∈ −       (4) 

where arctan is the four-quadrant inverse tangent function. The two-input function 
is represented by 1600 input/output samples. Several numerically distant outlier 
points were introduced in our data set, in order to investigate the robustness of the 
approach. 

During simulations we generate three set of data for each test function. The first 
belongs to the original input data set (OrigY), witch is without any noise. Next, we 
add noise to the original data set in the form of outliers, labeled as NoisyY, which 
we use for NNs training. We generate the third output data set by simulating the 
trained neural networks (SimY). In order to evaluate the networks’ generalization 
capability, we will use the following three measures: 

Training MSE (T MSE): The goodness of fit of the estimation (SimY) (mean 
squared errors with the noisy training samples, NoisyY); 

( ) ( )( )2

1

1T MSE
N

i
SimY i NoisyY i

N =

= −∑      (5) 

Outliers MSE (O MSE): The mean squared errors between the estimated data 
(SimY), and the original data set without outliers (OrigY); 

( ) ( )( )2

1

1O MSE
N

i

SimY i OrigY i
N =

= −∑      (6) 

Outliers Maximum Absolute Error (O MAE): The maximum absolute error 
between the estimated data (SimY) and the original data set without noise (OrigY); 

O MAE Max SimY OrigY= −       (7) 

For the above two dimensional test function (eq. 4) with noise in the form of 
outliers the following observations were made based on the 10 runs average 
approximation goodness values (see Figure 1, and Table II.). 
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(a) tansig based NN, poor generalization 
(b) Trigonometric type NN; poor generalization 

(c) Dombi type FNN, good function approximation properties  
(d) Łukasiewicz type FNN; good generalization 

Figure 1. Some examples for good and bad generalization and robustness, 20-20 hidden nodes 

The NNs function approximation goodness (T MSE value) is in the same order of 
magnitude when the order of the model is increased from 4 to 12. That means that 
the same number of F3 neurons should be applied in order to achieve similar 
training properties with the tansig based NNs. For more than 8-8 neurons in the 
hidden layers, the standard NNs’ O MSE and O MAE values are huge in 
comparison with the corresponding FNNs simulation results, which are less 
dependent on the network complexity. Using 20-20 hidden neurons, the tansig 
based and Trigonometric type networks have significant deviations from the target 
function which illustrate Figure 1(a, b). The functions surface indicate obvious 
overfitting. The Dombi type FNN perform good, followed by Łukasiewicz type 
FNN see Figure 1 (c, d), as the best generalizing network. 
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TABLE II. 
COMPARISON OF THE MSE VALUES FOR TWO-DIMENSIONAL TEST FUNCTION 

MSE NN size and type 
2D (1-4-4-1) 

 tansig  DJKFNN TrigJKFNN LDFNN  
T MSE 1.9·10-5 2.69·10-5 2.87·10-5 5.19·10-5 
O MSE  3.23·10-6 1.09·10-5 1.32·10-5 3.7·10-5 
O MAE  0.0095 0.0198 0.0187 0.0297 

 2D (1-8-8-1) 
 tansig  DJKFNN TrigJKFNN LDFNN  

T MSE 1.55·10-5 1.98·10-5 1.83·10-5 2.57·10-5 
O MSE  2.84·10-6 5.37·10-6 4.16·10-6 1.22·10-5 
O MAE  0.0217 0.0143 0.0125 0.0191 

 2D (1-12-12-1) 
 tansig  DJKFNN TrigJKFNN LDFNN  

T MSE 1.09·10-5 1.62·10-5 1.54·10-5 2.26·10-5 
O MSE  7.39·10-6 3.88·10-5 4.1·10-6 9.4·10-6 
O MAE  0.0762 0.0162 0.0222 0.0183 

 2D (1-16-16-1) 
 tansig  DJKFNN TrigJKFNN LDFNN  

T MSE 6.18·10-6 1.37·10-5 1.38·10-5 1.84·10-5 
O MSE  1.17·10-5 7.08·10-6 4.53·10-6 7.3·10-6 
O MAE  0.0916 0.0424 0.0287 0.0257 

 2D (1-20-20-1) 
 tansig  DJKFNN TrigJKFNN LDFNN  

T MSE 2.67·10-6 1.22·10-5 1.16·10-5 1.69·10-5 
O MSE  1.53·10-5 6.95·10-6 6.42·10-5 7.01·10-6 
O MAE  0.0934 0.0512 0.0521 0.0246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the simulation results, we concluded, that the Łukasiewicz type fuzzy 
D flip-flop neurons based NNs performed best, with good generalization 
capability, keeping the O MAE values very close to each other (values between 
0.0183 and 0.0257), followed by the Dombi FNNs: 0.0143-0.0512 and 
Trignometric one: 0.0125-0.0521, all of them are less dependent on the hidden 
layers neuron numbers. Finally, the tansig based NNs’ O MAE value fluctuation is 
from 0.0095 until 0.0934. For more than 12-12 neurons, the maximum deviation 
of the outliers is nearly equal to the 0.1 value. 

Conclusions 

In this paper we proposed a function approximator for a general class of multi-
input and one-output systems. Our simulation experiments have shown that some 
of the best FNNs clearly outperform standard tansig based NNs from the 
generalization capability point of view, case of noisy data sets. Further advantage 
of these structures is their easy hardware implementability [20]. Thus, we propose 
that in the future FNN circuits be integrated and used as standard elements. Such 
circuits could be rather universal concerning the area of applicability, and cheap as 
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well because of their independence on the actual problem. In the future we will 
further investigate the use of such NNs for more complex data sets and models. 
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