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Abstract: The steady laminar boundary layer flow of a non-Newtonian fluid over an 

impermeable flat plate in a uniform free stream is investigated when the bottom surface of 

the plate is heated by convection from a hot fluid. We show that similarity solutions to the 

hydrodynamic and thermal boundary layers are possible if the convective heat transfer 

associated with the hot fluid on the lower surface of the plate is proportional to a power 

function of x, where x is the distance from the leading edge of the solid surface. The 

equations of momentum and energy are transformed into a system of ordinary differential 

equations. Numerical solutions are provided and the effects of the parameters are 

examined on the flow and thermal fields. 
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1 Introduction 

Although the classical problem of a fluid flow along a horizontal, stationary 

surface located in a uniform free stream was first solved by Blasius [4], it is still a 

subject of current research (see e.g. [1], [5], [6]-[9]). Convective heat transfer is 

very important in processes involving high temperature, e.g. gas turbines, nuclear 

power plants, and thermal energy storage [3]. Recently, the problem of laminar 

hydrodynamic and thermal boundary layers over a flat plate with convective 

boundary condition has been examined for a Newtonian fluid, when the bottom 

surface of the plate is heated by convection from a hot fluid. The similarity 

solutions to the convective heat transfer problems have been studied by Aziz [2] 

and Magyari [11] for an impermeable plate, and by Ishak [9] for a permeable 

plate. 

The aim of this paper is to extend the work of Aziz [2] by investigating the 

hydrodynamic and thermal boundary layers for power-law non-Newtonian fluid 

on an impermeable plate. 
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2 Basic Equations 

We consider a steady two-dimensional laminar flow of a viscous, incompressible 

fluid of density   and temperature T  over the top surface of a semi-infinite 

horizontal impermeable stationary flat plate. We assume that the free stream 

moves on the top of the solid surface with a constant velocity U . It is assumed 

that the bottom surface of the plate is heated by convection from a hot fluid of 

temperature fT . 

Within the framework of the above-noted assumptions, the governing equations of 

motion and heat transfer for non-Newtonian flow neglecting pressure gradient and 

body forces can be described by the following equations [13]: 
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where u , v  are the velocity components along x  and y  coordinates, 

respectively, T  is the temperature of the fluid in the boundary layer. Furthermore, 

we apply power-law relation between the shear stress and the shear rate by 

y

u

y

u
K

n

xy









1

 , where 

1




n

y

u
  denotes the kinematic viscosity, K  is the 

consistency index for non-Newtonian viscosity and t  is the thermal diffusivity 

and 
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 . Here, n is called the power-law index, that is 1n  for 

pseudoplastic, 1n  for Newtonian, and 1n  for dilatant fluids. Then, (2) 

becomes 
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The applicable boundary conditions for the present model are 

i. on the plate surface 0y  (no slip, impermeable surface and convective 

surface heat flux) 
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where fh  is the heat transfer coefficient, and k  denotes the thermal conductivity; 

ii. matching with the free stream as y  

   Uxu , , (7) 

   TxT , . (8) 

If wT  denotes the uniform temperature over the top surface of the plate we have 

the relations:  TTT wf . 

Introducing the following dimensionless variables  
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and conditions (4), (5), (7) can be written as 

0)0,( xy ,  00 ),x(x ,   Uxy ),( .                   (10) 

Applying similarity variable   we derive 

][1 ffxbx    
,   fxbay    , (11) 
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where a prime denotes differentiation with respect to  . By inserting (10) and 

(11) into (9) we get 
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Equation (12) with the transformed boundary conditions has the form 
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The dimensionless velocity components have the form 
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The thermal diffusivity can be defined as 
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constant) and 0t  for 0u  (see [13]). Hence, from equation (3) 
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Defining the non-dimensional temperature by ),()( yxw  , i.e. 

)TT)((TT f     we get 

0)()(
1

Pr
)()(

1










 


 f

n
f

n
, (16) 

where 



Pr  is the Prandtl number. The transformed boundary conditions for 

the energy equation (16) 
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under the assumption that the heat transfer coefficient 
)n/(

f cxh 11  . We note 

that for Newtonian fluids it was shown in [2], [3], [9] that similarity solutions 

exist if fh  is proportional to 
21 /x . For a uniform surface temperature 

1)0(   holds and from (17) 0)0('  . This adiabatic case has been analysed 

by Magyari [10] for Newtonian fluid. 

Boundary condition (8) can be formulated 
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According to our knowledge there is no exact solution; therefore one has to use a 

numerical technique to solve the boundary value problems for the similarity 

equations (13), (14), (16), (17), (18). 
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3 Results 

The nonlinear ordinary differential equation (13) subject to the boundary 

conditions in (14) were solved numerically using the symbolic algebra software 

Maple 12. The boundary value problem has been solved by the Runge-Kutta-

Felhberg fourth-fifth method. Fig. 1 shows the Maple generated numerical 

solution for the velocity profiles for different values of n. 

 

 

Figure 1 

The profiles of  U/)y,x(u)('f   for different values of n 

For fixed Prandtl numbers 0.72 and 10, for selected values of the power index n , 

for a range of parameters a  Table 1 and Table 2 provide the numerical data for 

)0('  and )0( , respectively. In the case of n =1, the numerical values show 

a good agreement with those reported by Aziz [2] and Ishak [8]. 

Figures 2-4 exhibit that the plate surface temperature decreases as either Pr or n 

increases and also when a  decreases. The temperature gradient at the surface 

increases as Pr increases, which implies an increase in the heat transfer rate at the 

surface. We observe that the thermal boundary layer thickness decreases with an 

increasing Prandtl number or increasing power index n ; moreover, the 

hydrodynamic boundary layer thickness decreases as n increases. 
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Table 1 

Values of )0(  for various values of a , Pr  and n  

 n = 0.5  n = 1  n = 1.5  

a  Pr = 0.72 Pr = 10 Pr = 0.72 Pr = 10 Pr = 0.72 Pr = 10 

0.05 0.043392 0.046625 0.042767 0.046787 0.043390 0.047138 

0.10 0.076655 0.087355 0.074724 0.087925 0.076647 0.089174 

0.20 0.124294 0.155101 0.119295 0.156903 0.124273 0.160928 

0.40 0.180329 0.253329 0.169994 0.258174 0.180285 0.269255 

0.60 0.212221 0.321120 0.198051 0.328945 0.212159 0.347148 

0.80 0.232808 0.370723 0.215864 0.381191 0.232732 0.405853 

1 0.247195 0.408591 0.228178 0.421344 0.247110 0.451682 

5 0.308129 0.607006 0.279131 0.635583 0.307997 0.707239 

10 0.317925 0.646233 0.287146 0.678721 0.317784 0.761065 

20 0.323061 0.667811 0.291328 0.702563 0.322915 0.791172 

 

 

Figure 2 

Temperature profiles for different values of Pr when n=0.5 and a =1 
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Figure 3 

Temperature profiles for different values of n when Pr=10and a =1 

 

Figure 4 

Temperature profiles for different values of a  when Pr=0.72 and n=0.5 
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Table 2 

Values of )0(  for various values of a , Pr  and n  

 n = 0.5  n = 1  n = 1.5  

a  Pr = 0.72 Pr = 10 Pr = 0.72 Pr = 10 Pr = 0.72 Pr = 10 

0.05 0.132148 0.067487 0.144661 0.064256 0.132200 0.057224 

0.10 0.233446 0.126441 0.252758 0.120752 0.233528 0.108253 

0.20 0.378526 0.224497 0.403523 0.215484 0.378634 0.195359 

0.40 0.549175 0.366677 0.575014 0.354566 0.549289 0.326862 

0.60 0.646298 0.464799 0.669916 0.451759 0.646402 0.421420 

0.80 0.708990 0.536596 0.730170 0.523512 0.709085 0.492684 

1 0.752805 0.591408 0.771822 0.578656 0.752890 0.548318 

5 0.938374 0.878599 0.944173 0.872883 0.938401 0.858552 

10 0.968207 0.935377 0.971285 0.932128 0.968222 0.923894 

20 0.983847 0.966609 0.985434 0.964872 0.983854 0.960441 

 

Conclusions 

In this paper we studied the problem of steady laminar boundary layer flow and 

heat transfer over a stationary flat surface in a parallel stream with convective 

boundary condition. Similarity solution to the thermal field is possible when the 

convective heat transfer from the lower surface varies like )1/(1  nx , where x  is 

the distance from the plate. On the flow and thermal fields, the influence of the 

governing parameters, the Prandtl number, the power index n  and the value of a  

characterizing the hot fluid convection process is discussed. 
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