
Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 5 –

Position Identification of Moving Agents in
Networks

Anna Černá, Jan Černý
Faculty of Mangement, University of Economics, Prague
Jindřichův Hradec, Czech Republic
cerna@fm.vse.cz, cerny@fm.vse.cz

Abstract: The paper introduces a group of problems connected with the position
identification of an agent moving through a given network and starting in an unknown
vertex or edge (arrow). It presents a classification of the problems, describes the
application fields and outlines further possible developments of the theory.

Keywords: Agent; position; identification; network

1 Introduction

Agent-based models represent a topic of wide and deep studies during the past two
decades. They have been used in the simulation of road traffic [6], in grid
calculation [4], in human systems [2], and in coalitions [7], and one can find
books dealing with them, see e.g. [15]. Agents can possess different “cleverness”,
as one can see in the agent typology presented in a paper published in Acta
Polytechnica Hungarica in 2006 [12]. Their learning capability is described in
[18].

Mathematical models describing the motion of agents through networks are
described in, for example, [8], [13], [20], although in [8] and [20], the authors use
the notion “robot” instead of “agent”. In contrast to [20], we shall deal with other
approaches to “navigation”. On the one hand, we shall suppose that the agent
moves through a given network; on the other hand the agent is supposed to be able
to deal with other observations. Our approach represents a generalization of the
one from [5], [14], and [19]. They found methods leading the agent to the target
vertex when the network fulfils some particular constraint of “synchronizing
colouring”. In that case, the “cleverness” of the agent may be rather low. We
weaken the first feature and strengthen the second, achieving both in several
different ways.

A. Černá et al. Position Identification of Moving Agents in Networks

 – 6 –

We shall present several methods of solving problems of agent position
identification and we shall outline their possible connection to problems which
have been known now for decades.

The problems of agent position identification in networks can be encountered in
several branches of polytechnics, for example:

• We can meet objects moving through telecommunication networks in
ways similar to the agents in our models. We can mention, for example,
tokens in token rings, packets in packet mode networks and so forth, and
identification of their positions is a natural issue.

• A robot inspecting a pipeline network from inside is another good
example of application.

• A speleologist exploring a cave network can be regarded as an agent
moving through it. However, our theory has a sense only in the case when
the explorer cannot use a Tarry or Tremaux algorithm based on marking
the ends of incident edges in vertices.

• Transportation networks represent probably the most important
application field of the problems connected with the identification of and
agent’s positions.

The last-but-not-least thing to be mentioned is the fact that the models and
methods used in automata theory studying synchronizing input sequences are
closely related to the ones used in agent position identification theory. The bridge
connecting these two branches can be seen in the problem of road colouring.

2 Types of Graphs Used

We expect the reader is familiar with the terminology of graph theory. We shall
only specify several notions and denotations here.

First we mention that the vertex set V is always finite. If v ∈ V and w ∈ V, then
we form two kinds of pairs:

• non-oriented pair (v, w) without any order of v and w, i.e. (v, w) = (w, v),

• oriented pair vw where v is the beginning and w is the end, i.e. vw ≠ wv for
v ≠ w.

The set of all non-oriented pairs (v, w) of vertices from V is denoted VV, and its
elements are called edges. They are graphically expressed by abscissae connecting
the symbols of vertices v and w, usually linear, exceptionally curvilinear.

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 7 –

The set of all oriented pairs of vertices vw from V is denoted V×V or V2 and its
elements are called arrows. They are graphically expressed by arrows starting in
the symbol of the vertex v and ending in the symbol of w, usually linear,
exceptionally curvilinear.

Note that in either (v, w) ∈ E or in vw ∈ A we allow the possibility v = w. In such
a case we speak about loops, non-oriented or oriented respectively. Similarly, if
we do not specify otherwise, we allow that a pair of vertices v, w is connected by
more than one edge (v, w) or arrow vw. In such a case, either we distinguish
between them by an auxiliary criterion, e.g. a colour or a position (“first to the
left”), or we take an arbitrary one.

If either (v, w) ∈ E or vw ∈ A, then we say that v and w are incident with (v, w) or
vw, respectively.

Finally, we denote 2V = {W: W ⊂ V} as the group of all subsets of V.

2.1 We speak about the graph G = (V, E) if E ⊂ VV. The set E is said to be a set
of edges of G. In other words, we speak briefly about a graph instead of “non-
oriented graph”.

2.2 We speak about the digraph D = (V, A) if A ⊂ V2. The set A is said to be a set
of arrows of D. In other words, we speak briefly about a digraph instead of
“oriented graph”. Let k > 1. A vertex v ∈ V is said to be k-merging if there exist k
different arrows u1x, …, ukx.

2.3 Let Γ be a finite set of colours. The graph G = (V, E) or the digraph D = (V,
A) is said to be coloured if each e ∈ E or a ∈ A is assigned a colour γ(e) ∈ Γ or
γ(a) ∈ Γ, respectively. The mapping γ is said to be colouring. That is, speaking on
colouring, we mean the colouring of edges or arrows. If we need to speak about
the colouring of vertices, we will specify so. If we do not specify otherwise, we
shall suppose that the colouring is a mapping onto the set Γ i.e. for any colour c ∈
Γ there exist x ∈ E or x ∈ A such that c = γ(x).

Let D = (V, A) be a digraph, γ ∈ Γ and k > 1. A vertex v ∈ V is said to be k-
merging for γ if there exist k different arrows u1x, …, ukx with the colour γ.

2.4 The digraph D = (V, A) is said to be derived from the graph G = (V, E) if
exactly one of the relations vw ∈ A, wv ∈ A holds for each (v, w) ∈ E. Moreover,
if G is coloured, then D is coloured as well and γ(vw) = γ((v, w)) for each vw ∈ A.
Note that D arises from G by the replacing of each edge by an arrow connecting
the same vertices and it is of the same colour if G was coloured.

2.5 The digraph DG = (V, AG) is said to be equivalent to the graph G = (V, E) if
vw ∈ AG and wv ∈ AG if and only if (v, w) ∈ E. Moreover, if G is coloured, then
DG is coloured as well and γ(vw) = γ(wv) = γ((v, w)) for each (v, w) ∈ E. Note that
DG arises from G by the replacing of all edges by pairs of counter arrows and they
are of the same colour if G was coloured.

A. Černá et al. Position Identification of Moving Agents in Networks

 – 8 –

2.6 Let D = (V, A) be a digraph and let AD ⊂ VV×VV. Let vw ∈ A, xy ∈ A if and
only if (v, x)(w, y) ∈ AD. Then the digraph DD = (VV, AD) is said to be the
double digraph derived from D.

2.7 Let D = (V, A) be a digraph and let AT ⊂ 2V× 2V. Let U ⊂ V, W ⊂ V. Let UW
∈ AT if and only if W = {w ∈ V: there exists u ∈ U such that uw ∈ A}. Then the
digraph DT = (2V, AT) is said to be the total digraph derived from D.

2.8 Let D = (V, A) be a digraph, let v ∈ V and let AR ⊂ 2V–{v}× 2V–{v}. Let U ⊂ V–
{v}, W ⊂ V–{v}. Let UW ∈ AR if and only if W = {w ∈ V–{v}: there exists u ∈ U
such that uw ∈ A}. Then the digraph DRv = (2V–{v}, AR) is said to be the reduced
total digraph derived from D and v.

2.9 Let C be a finite set called set of commands. Let D = (V, A) be a digraph and
let δ : A × C → A be a mapping. We say that the arc δ(a, c) follows after the arc a
due to the command c. Let Aδ = {ab : a ∈ A, b ∈ A and there exists c ∈ C, δ(a,
c) = b}. Let DδC = (A, Aδ) be a coloured digraph such that δ(a, c) = b implies that
the arrow ab has the colour c. Then the digraph DδC is called the transition
digraph corresponding to the digraph D and the set of commands C. We note that
the vertices of DδC are arrows of the former digraph D and the arrows of DδC
express the choice of next arrow in D due to the received command.

Remark: Commands from the set C serve as colours of arrows in the graph DδC.

2.10 A graph G = (V, E) or a digraph D = (V, A) is said to be locally planar if it is
embedded in a smooth surface. This embedding determines cyclic ordering of
edges or arrows incident with v for each v ∈ V. Since different embeddings of the
same graph or digraph may determine different cyclic orderings, say “Given
locally planar graph/digraph”, we shall mean that it is given together with its
embedding in a given surface, i.e. together with the cyclic orderings.

We point out that the cyclic ordering is normally meant in a counter clockwise
sense. It is similar to the ordering of adjacent roads in a roundabout (continental
European, not British, where the motion is clockwise).

2.11 Usually, for a motion of an agent through a graph or a digraph, it is
important to note if there exists a path from v to w for each pair of vertices v, w. A
graph G = (V, E) having that property is said to be connected; a similar digraph D
= (V, A) is said to strongly connected. If in the digraph there exists a vertex v
such that there exists a path from any w ∈ V to v, then the digraph is said to be
weakly connected. If we do not specify otherwise, we shall automatically suppose
that the agent moves through a network which is connected in the non-oriented
case and weakly connected in the oriented one.

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 9 –

3 Moving Agents

3.1 An agent is defined as a finite discrete system S composed from two finite
automata, namely an executor A performing the moving and a controller A′
giving commands to A. That is, from the point of view of the classification of
agents, presented e.g. in [12], the agents we shall deal with belong to the class of
hysteretic agents. Of course, in the further development of the theory, a role of
“less clever” reactive agents or “more clever” deliberative and, maybe mainly,
attentive ones will be studied as well.

We can imagine that the agent is specified and constructed by some external
client, after which the agent enters the network in an “unknown” position, and
from that moment it moves step by step in the network autonomously until the
controller orders it to stop (usually in a precisely identified position).

3.2 The executor A = (Q, C, δ) is without output. Internal states q ∈ Q
represent positions of the agent; inputs c ∈ C represent commands coming from
A′; δ represents a transition mapping; that is, if the agent is in the position q and
A receives a command c, then it moves to the new position δ(q, c).

We must admit that the executor A can only be partially defined, or in other
words. the next position δ(q, c) need not be defined for some position q ∈ Q and a
command c ∈ C. Then the agent remains in the position q and waits for the next
command. In other words, it behaves like δ(q, c) = q in that case like it was fully
defined. This approach differs from the one of e.g. [16], where it is supposed that
the input command c cannot come in such a case.

We suppose that exactly one agent moves through the given graph or digraph and
its movement, initiated by a sequence of commands s = c1, …, cn , represents a
discrete process q0, q1, …, qn, where q0 is the initial position and for i = 1, 2, …, n
we have qi = δ(qi–1, ci). If the command is c = stop then δ(q, c) = q.

Obviously, our approach possesses an extension to the case of more than one
moving agent, but we shall not study it now.

3.3 The transition mapping δ can be extended and modified in several senses.

First, the previously-mentioned relations can be expressed also by the formulae:

qn = δ(q0, s) = δ(q0, c1, …, cn) = δ(… δ(δ(q0, c1), c2), …, cn)

 q0, q1, …, qn = δ*(q0, s) = δ*(q0, c1, …, cn) =
= q0, δ(q0, c1), …, δ(q0, c1, …, cn)

The indexes of positions and commands need not be concordant; i.e. we can write

qm+n = δ(qm, s) = δ(qm, c1, …, cn)
qm, qm+1, …, qn = δ*(qm, s) = δ*(qm, c1, …, cn)

A. Černá et al. Position Identification of Moving Agents in Networks

 – 10 –

3.4 The controller A′ = (Q′, X, C, δ′, λ′, q0′) is a finite state transducer (=
“complete” initial finite automaton – see 5.1) having the output set C. Its input set
X represents the possible observations of some data in the current positions of the
agent.

The simplest controller subsequently emits the “a priori” given sequence c1, …, cn.
It has the set of internal states Q′ = C, the initial state q0′ = c1, the input set X = ∅,
and the output set Y = C, the transition mapping non depending on input: δ(ci) =
ci+1 for i = 1, …, n – 1 and δ(cn)= cn. The output mapping λ is identical, i.e. λ(ci)
= ci. This controller realizes the situation when the sequence of commands s = c1,
…, cn is known at the beginning and does not depend on the observations during
the movement of the agent. Such a controller is called trivial.

More “smart” controller deduces the emitted commands as from observed current
data x as from the previous steps “reflected” in the state q′.

3.5 Usually, if the agent moves in the digraph D = (V, A) then we put Q = V, i.e.
the positions are in vertices and arrows serve to transitions between vertices only.
In this case we speak about “vertex bound positions”.

On the other hand, if it moves in the graph G = (V, E), then we model it in the
equivalent digraph DG = (V, AG) and we put Q = AG, i.e. the positions are in
edges of G in a given direction of motion, and the vertices serve to transition
between edges only. We speak about “edge bound positions” even though we
model them as “arrow bound”.

Exceptionally, these choices can be interposed, that is, we can put Q = V (vertex
bound) for the agent moving in G = (V, E) and Q = A (arrow bound) for the agent
moving in D = (V, A). However, these possibilities will not be in the centre of our
focus.

3.6 The main problem we are focused on is the identification of the agent’s final
state by the controller. The controller manifests that fact via emitting the
command “stop”.

The simplest case is when it is “a priori” known that after emitting the sequence of
commands s = c1, …, cn, the trivial controller will lead the executor to stop in the
given position q independent of the initial position q0. Then we say that s = c1, …,
cn is the synchronizing sequence of commands.

In more complicated cases, the controller observes the data of the passed vertices
and edges or arrows and, on the basis of this, it identifies the current position and
eventually decides to emit the command “stop”.

3.7 Usually, there is given a target vertex or edge or arrow to the controller at the
beginning. Then the controller compares the identifications with the target and in
the case of their being equal emits “stop”.

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 11 –

We have to note that this is exactly characterized if the target is of the same type
as the position, e.g. both are vertices or both are arrows, etc. And, fortunately, this
is the main case. The situation when the target is an arrow and positions are
vertices is practically impossible. Thus, we must say what happens when the target
is a vertex v but the agent’s positions are in arrows, or in edges in given directions,
which is nearly the same. Then the desired final positions of the agent are all of
ending in the vertex v. For example, in the graph in Fig. 1, the target vertex x
implies the desired final positions vx, yx and zx.

If the induced path passes or ends in the target for the given sequence s = c1, …, cn
of commands and for any initial position, then we say that the sequence s is target
finding.

An agent can observe some data characterizing its position.

The notion of observability in graphs was studied e.g. in [11]. Our point of view is
the following:

3.8 In the sequel we shall distinguish the following data, assumed to be available
(i.e. “observable” by the agent) for each vertex v ∈ V:

D0 Beginnings of outgoing edges or arrows and their colours (if coloured).
Moreover, if it is not the first position of the agent, then the end of the
edge/arrow the agent comes in the vertex v belongs here as well.

D1 Degree d(v) of the vertex v in the case of (non-oriented) graph.

D2 Number d(v, c) of incident edges of the vertex v with the colour c in the
case of (non-oriented) graph.

D3 Out-degree d+(v) of the vertex v in the case of digraph.

D4 Ends of ingoing arrows, their colours (if coloured) and in-degree d–(v) of
the vertex v.

D5 Number d+(v, c) of outgoing arrows from the vertex v with the colour c in
the case of digraph.

D6 Number d–(v, c) of ingoing arrows to the vertex v with the colour c in the
case of digraph.

D7 Counter clockwise or clockwise cyclic ordering of incident edges or
arrows with a vertex in the case of planar or locally planar graphs.

D8 Mark μ(v) of the target vertex v.

3.9 As concerns edges or arrows, we shall distinguish the following data, assumed
to be available for each edge e ∈ E or each arrow a ∈ A:

D9 Colour γ(e) or γ(a) if it is coloured.

D10 Orientation (= the allowed direction of moving) of a.

D11 Mark μ(e) of the target edge e or μ(a) of the target arrow a.

A. Černá et al. Position Identification of Moving Agents in Networks

 – 12 –

3.10 If positions of the agent are vertex bound then each position may be
characterized by data selected from D1-D8. If they are edge bound then we add
D9, D11 and for arrow bound we add D9, D10 and D11 to the previous ones. We
say “add”, not “replace”, because the agent, moving through an edge or arrow, is
able to observe data characterizing the final vertex before taking the decision
concerning the next position.

Among the data D0-D10, we shall emphasise the ones that are needed in each case
of agent motion we can meet. We call them basic data. If we deal with graphs and
vertex bound agent positions, then D0, D1 and D2 belong to them; if it is edge
bound then we add D9. If we deal with digraphs and vertex bound agent positions,
then D0, D3 and D5 belong to them; if it is arrow bound then we add D9 and D10.

A bit beyond this frame are D4 and D6 for digraphs. If we add them to D0, D3 and
D5, we speak about extended basic data. We note that in some applications it is
not possible to observe that in a vertex there are ends of incoming arrows. Of
course, extended basic data are observable, for example, in the major part of
transportation networks.

On the other hand, in transportation networks and in some electric flex networks
the assumption of local planarity is quite natural and then we can observe the data
D7 there.

Finally, we can imagine many possible marks applied to vertices, edges or arrows.
Their technical principles may vary very widely depending on the essence of
graph or digraph in practice.

4 Problems Connected with the Identification of the
Agent’s Position

4.1 Main Problem

4.1.1 As we see from the title of the paper, our main task is to formulate and solve
various identification problems of the current position of agents moving in
networks. However, in connection with this, some “auxiliary” problems arise, for
example, how to choose the orientation of a given graph not yet oriented, how to
choose the colouring of a given graph or digraph if not yet coloured, etc. Even
though these problems are interesting as well, we shall start with the general
position identification problem – in short, GPIP: Disregarding the (unknown at
the beginning) initial position of the agent, to identify its current position after
performing a given sequence of commands. This identification can be

• full, i.e. the current position is unambiguously determined as a concrete
qn ∈ Q,

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 13 –

• partial, i.e. a subset Qn ⊂ Q is found (as small as possible) such that the
current position belongs to it.

4.1.2 GPIP can be divided into the following sub-problems:

GPIP-1: To find the partial or full identification of the initial position q0
of the agent at the beginning of its movement.

GPIP-2: If the initial position is not fully identified, i.e. q0 ∈ Q0, ⎪Q0⎪ >
1, to find such sequence s = c1,…,cn of input commands that the position
qm ∈ δ (…δ(Q0, c1),…,cm) is unambiguously identifiable for some m ≤ n.

GPIP-3: Among the solutions s of GPIP-2 to find the shortest one.

4.2 X/Y/Z Classification of Systems

4.2.1 The solution of an agent position identification problem strongly depends on
the type of system, consisting of the agent and the network (i.e. graph or digraph).
We shall classify them using three symbols X/Y/Z expressing the following
features:

X) type of network and position of agent: Da – digraph, position in arrows
(= “arrow bound”), Dv – digraph, position in vertices, Ne/Nv – graph
(non-oriented), position in edges/vertices respectively,

Y) possibility of additional observations beyond basic data (see 3.8-3.10):
B – basic data only, E – extended basic data in digraphs, L – locally
planar graph/digraph with cyclic ordering of edges in vertices, Tv – target
vertex marking, Te – target edge marking,

Z) occurrence of edge colouring: C – coloured, N – non-coloured.

For instance, the class Ne/Tv/C contains full or partial identification of marked
target vertex in non-oriented coloured graphs with positions of the agent in edges.

4.2.2 Dv/B/C represents a deeply explored and well known case of synchronizing
colouring [5], [14], [19]. It concerns digraphs with proper colouring, i.e. no
outgoing arrows from the same vertex have equal colours. The command “c”
determines the colour of the arrow to the next position, hence C = Γ. The trivial
controller subsequently emits the “a priori” given sequence s = c1, …, cn. The
sequence s is called synchronizing if ⎪δ(V, s)⎪ = 1. If there exists a synchronizing
sequence then the colouring is called synchronizing as well.

These notions are important mainly for the case when each vertex has the same
outdegree ⎪Γ⎪ i.e. for each vertex and each colour there exist exactly one outgoing
arrow having that colour.

4.2.3 We admit more than one symbol in the second position, e.g. Dv/BTv/C
means that both basic data and target vertex mark are observable.

A. Černá et al. Position Identification of Moving Agents in Networks

 – 14 –

4.3 Auxiliary Problems

It may happen that the given network is modified before the agent starts its motion
in it. In our case, the goal of such modifications is to facilitate the consecutive
identification of moving agent’s position.

We need to emphasise that the problems mentioned henceforth will be fully
formulated and able to be solved only if the X/Y/Z type of system is specified.

4.3.1 One of the auxiliary problems is the following: Given a locally planar
connected graph G = (V, E). To find a digraph D = (V, A) derived from G such that
it is synchronizing with respect to the commands of the type “c” where c is a
positive integer and the command means “when you come to the vertex w by the
arrow vw, then continue through the cth outgoing arrow, counting in clockwise
sense from q”.

4.3.2 Another auxiliary problem starts with a digraph D = (V, A) and a set of
colours Γ. Then one has to find a synchronizing colouring of D in the system
Dv/B/C. This is the well known road colouring problem – see e.g. [1], [19]
studied mainly in the case of a constant outdegree of vertices in D.

5 Applications and Connection with Other Theories

5.1 Finite Automata

5.1.1 As we remember from the “classic” publications, a finite automaton (of the
Mealy type) is defined as a quintuple A = (Q, X, Y, δ, λ) where Q is a finite set of
internal states, X is a finite set of inputs, Y is a finite set of outputs, further δ: Q ×
X → Q is a transition mapping determining the next state, i.e. qn+1 = δ(qn, xn+1), λ:
Q × X → Y is an output mapping determining the next output, i.e. yn+1 = λ(qn,
xn+1). We note that in more recent papers this notion is often named the “finite
state transducer”.

5.1.2 The automaton A can be represented by a “coloured” digraph D = (Q, A)
with the “colour” set Γ = X and auxiliary marking with the mark set Y. The arrow
pq ∈ A with the colour γ(pq) = x and the mark μ(pq) = y if and only if q = δ(p, x)
and y = λ(p, x).

We see that the colouring of the digraph D is proper and the outdegree of each
vertex equals to the number of colours ⎪X⎪.

Note that D may be a multigraph; there may exist more than one arrow connecting
two adjacent vertices p, q. Of course, they are distinguished by their colours.

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 15 –

5.1.3 We can say that the question of final state identification is almost as old as
the finite automata theory itself. As a “black box”, the automaton does not allow
for the observation and to identification of the internal state directly. In late 50’s,
e.g. in [9], there were studied so called experiments, i.e. observations of output
sequence o = y1, …, yn corresponding to a given input sequence s = c1, …, cn in
order to identify the final state. Saying by the “moving agent through network”
language, the agent receives the command sequence s = c1, …, cn, passes through
a path observing the marks o = y1, …, yn and identifies the final vertex. If there is a
target final vertex then we say the sequence s = c1, …, cn is target finding.

5.1.4 A decade later, in [3], the notion of synchronizing sequence s = c1, …, cn
was introduced using the name “directing word”. There ⎪δ(Q, s)⎪ = 1, i.e. the final
state is unambiguously determined without any observation. That means, the
automaton is thought as a triplet A = (Q, X, δ), the corresponding coloured
digraph has no marks and the synchronizing property enables identification of the
final state anyway. The minimal length of the synchronizing sequence s was also
studied and estimated, as seen e.g. in [10] and [17].

5.2 Transportation

The authors are convinced that transportation networks represent the most
important application field of the problems connected with identification of an
agent’s position in networks. Of course, the moving agents are persons in this
case. Primarily, we shall consider road networks, bicycle path networks and
pedestrian or hiking path networks. One can be sure that these studies have
practical sense in spite of GPS devises for several reasons. Somewhere or
sometimes there may be problems with signal, some area is not depicted well in
GPS and mainly, many agents (drivers, cyclists, hikers) do not possess GPS.

Dealing with diverse transportation networks we can meet many variants of our
main problem described in 4.1 and not less auxiliary problems presented in 4.3.
The systems we shall deal with may belong to many classes in our triple X/Y/Z
classification.

5.2.1 Example: Let G = (V, E) be the graph from Fig. 1 representing a very
simple network of cycle paths. Let us suppose that the moving agent’s name is
Clark. If it is a system of the type Nv/B/N, even though Clark can distinguish the
vertices in according to the degrees, d(v) = d(z) = 2, d(x) = d(y) = 3, he has no
chance to identify the current state; neither will he follow the simple rule
represented by a sequence of commands s = c1, …, cn nor a more complex rule
represented by a controller A′ = (Q′, X, C, δ′, λ′, q0′). The vertices v and z are
undistinguishable observing basic data only. The same remains true even in the
cases Nv/BL/N and Ne/BL/N as one can verify easily.

A. Černá et al. Position Identification of Moving Agents in Networks

 – 16 –

5.2.2 Example continuation: On the other hand, the systems Ne/BLTv/N and
Ne/BLTe/N enable to find “target finding” sequence s = c1, …, cn.

In the graph G = (V, E) from Fig. 1 we have Q = {vx, vy, xv, xy, xz, yv, yx, yz, zx,
zy}. Since the graph is locally planar the command set may be C = {stop, 1, 2, 3}
where m = 1, 2, 3 means: “take the mth exit anticlockwise. If the marked vertex is x
then the target x finding sequence of commands is 1, 1, 1:

• The initial positions vx, yx and zx have the observable marked target
vertex x immediately at the end of the edge.

• The initial positions vy, yv and yz have the observable marked target
vertex x at the end of the next position after applying the command
“1”.

• The initial positions xv, xy and zy have the observable marked target
vertex x at the end of the reached position after applying the
subsequence “1,1”, e.g. xy → yz → zx.

• The initial position xz has the observable marked target vertex x at the
end of the reached position after applying the sequence “1, 1, 1”: xz
→ zy → yv → vx.

We have just shown that regardless of the initial position, applying the sequence
“1, 1, 1” certainly enables the agent to pass through the target vertex x.

 v v v

 x y x y x y

 z z z

Figure 1
Original graph

Figure 2
Derived digraph

Figure 3
Coloured graph

If the marked target position is vx then the the target finding sequence of
commands is 1, 1, 1, 2, 1, 1, 1, 2, 1, 1 as can be easily seen.

Real world interpretation. Let us suppose that the graph from Fig. 1 represents a
cycle path network in a forest. Clark knows that his friend Xanthia is waiting for
him sitting at a vertex (junction) x. He comes to the forest from outside and finds a
path not knowing where he is and which direction to go in. Following the
command sequence “1, 1, 1” he is sure that he will find Xanthia at the latest at the
third passed vertex.

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 17 –

5.2.3 Example. We can ask whether the given graph G = (V, E) may be replaced
by a digraph D = (V, A) derived from the graph G (see 2.4) in such a manner that
D is synchronizing as a locally planar graph. That is, we consider the agent
moving in D as a system Da/BL/N.

For the graph G from Figure 1 the answer is positive, the derived digraph D is in
Figure 2. It is easy to see that the sequence s = 2, 1, 2, 2, 2, 1, 2, 2, 1, stop
synchronizes the digraph D into the position q = vx. E.g. xz 2→ zy 1→ yv 2→ vx
2→ xy 2→ yv 1→ vx 2→ xy 2→ yv 1→ vx stop.

Real world interpretation. Let us suppose that the supervisor of the cycle
network is considering converting all paths to a one-way type. Existence of a
synchronizing sequence of commands may be a welcome feature.

That was “a priori” a given sequence s applied by a trivial controller. Let us
consider a non-trivial controller A′ = (Q′, X′, C, δ′, λ′, q0′) where Q’ = {p, r}, X′ =
{1, 2}, C = {1, stop}, δ′ (p, 1) = p, δ′ (p, 2) = δ′ (r, 1) = δ′ (r, 2) = r, λ′ (p,1) = 1,
λ′ (p, 2) = λ′ (r, 1) = λ′ (r, 2) = stop, q0 = p. When the agent’s position is uw, then
the current input x’ of the controller is equal to the value of outdegree d+(w).
Hence, the final position vx is reached by the agent in at most 3 steps; e.g. q0 = xy,
q0’ = p, x1’= d+(y) = 1, q1’= δ′ (p, 1) = p, c1 = λ′ (p,1) = 1, q1 = δ(xy, 1) = yv, x2’=
d+(v) = 1, q2’= δ′ (p, 1) = p, c2 = λ′ (p,1) = 1, q2 =δ(yv, 1) = vx, x3’= d+(x) = 2, q3’=
δ′ (p, 2) = r, c3 = λ′ (p,2) = stop, q3 =δ(vx, stop) = vx (repeated, i.e. the agent stops
there).

We note that the vertex y is 2-merging (see 2.2). Obviously, existence of such a
vertex is a necessary condition for the synchronizing property.

5.2.4 Example. We can put another question then in 5.2.3. We shall ask whether
the given graph G = (V, E) may be coloured in such a way that it becomes
synchronizing as a locally planar graph. That is, we consider the agent moving in
coloured G as a system Ne/BL/C.

Real world interpretation. Let us suppose that the supervisor of the cycle
network is considering “colouring” the paths in the network, distributing coloured
spur stones. Existence of synchronizing sequence is welcome as well.

For the graph G from Fig. 1 the answer is positive, the coloured graph G is in Fig.
3. Dashed lines represent the colour “b” (blue), solid lines the colour “r” (red).
The possible commands we shall use are the following: 1r (first red to the right,
i.e. in a counter clockwise direction), 2r, 1b (first blue to the right) and 2b. The set
of all positions is Q = {vx, vy, xv, xy, xz, yv, yx, yz, zx, zy}. It is easy to prove that
δ(q0, s) = xy for the sequence s = 1r, 1b, 1r, 1b, 1r, 1r, 1b, 1r and for each q0 ∈ Q.
E.g. q0 = xz 1r→ xz 1b→ zy 1r→yv1b→ vx 1r→ xy 1r→ yv 1b→ vx 1r→ xy.

We can note that having the desired final vertex x, the sufficient synchronizing
sequence is s without the last “1r”, i.e. 1r, 1b, 1r, 1b, 1r, 1r, 1b.

A. Černá et al. Position Identification of Moving Agents in Networks

 – 18 –

Similarly as in example 5.2.3, it is possible to look for some non-trivial controller
here as well. Its construction can result from the fact that all vertices are
distinguishable by their cyclic ordering of the colours of incident edges: v ∼ b-r,
x ~ b-b-r, y ~ b-r-r, z ~ r-r. Hence we can put X = {v, x, y, z} as observable input
data for the controller A′ = (Q′, X, C, δ′, λ′, q0′). The other components of A′ can
be defined in many ways, e.g. Q′ = {qt, qu, qv, qx, qy, qz}, C = {1r, 1b, stop},
q0′ = qu. The transition and output mappings are defined only partially; the other
“values” are irrelevant: δ’(qt, y) = qt, λ’(qt, y) = stop, δ’(qu, v) = qv, λ’(qu, v) = 1b,
δ’(qu, x) = qx, λ’(qu, x) = 1r, δ’(qu, y) = qy, λ’(qu, y) = 1b, δ’(qu, z) = qu, λ’(qu, z) =
1b, δ’(qv, x) = qx, λ’(qv, x) = 1r, δ’(qx, y) = qt, λ’(qx, y) = stop, δ’(qy, z) =
qz, λ’(qy, z) = 1b, δ’(qz, x) = qx, λ’(qz, x) = 1r. The digraph representing the
partially defined controller is in Fig. 4. We shall show how the agent works if the
starting position (= initial state of A) is q0 = xz:

1° A′, starting in qu, receives input z, remains in qu and emits the command 1b. A
receives it and transits to zy.

2° A′ receives input y, transits to qy and emits 1b. A receives it and transits to yz.

3° A′ receives input z, transits to qz and emits 1b. A receives it and transits to zx.
4° A′ receives input x, transits to qx and emits 1r. A receives it and transits to xy.
5° A′ receives input y, transits to qt and emits stop. A receives it and stops in xy.
A′ receives input y remains in qt and emits stop etc. The agent stops in the
position xy “for ever”.

 y/stop initial state

 qt qv

 x/1r v/1b qu

 y/stop x/1r y/1b

 qx z/1b qy

 x/1r z/1b

 qz

Figure 4
Finite transducer A′

5.2.5 Example – continuation of 5.2.3. We have seen that the digraph in Fig. 2
possesses a synchronizing sequence if it is considered as a system Da/BL/N, i.e.
when the agent’s positions are arrow bound and each vertex has a cyclic ordering
of outgoing arrows. Now we can ask whether there exists a colouring of arrows
such that the coloured digraph becomes synchronized even in the system Dv/B/C.
Yes, it exists (see Fig. 5); the synchronizing colouring exists with vertex bound

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 19 –

positions without any cyclic ordering in vertices. Of course, the set of commands
C = {b, r}, “b” means blue, in Fig. 5 dashed lines, “r” means red, in Fig. 5 solid.
The synchronizing sequence is s = r, b, b, r. We must not forget that if the position
is for example z, the command is b and from there no outgoing blue arrow exists,
the agent remains in the same position. Hence his behaviour is identical as if there
was a blue loop as in Fig. 6, where the loops were added and the digraph has
constant outdegree 2 in each vertex. Colouring of such digraphs is the purpose of
“road colouring” as described e.g. in [1] or [19].

 v v

 x y x y

 z z

Figure 5
Synchronizing colouring

Figure 6
Constant outdegree

It is easy to see that the colouring from Fig. 3 is also synchronizing if applied to
Fig. 2. The synchronizing sequence is very simple – b, b, b.

6 Target Reach in Systems Ne/BLTe/N and
Ne/BLTv/N

As we have mentioned in 4.2.2, the case of oriented and coloured Dv/B/C systems
have been deeply explored by many authors.

Now we turn our focus to the yet “untouched” types Ne/BLTe/N and Ne/BLTv/N.
On one hand, they need not be coloured and oriented, but on the other hand, they
must fulfil stronger constraints of local planarity and marked targets.

We shall present two theorems. The first one proves the existence of the desired
sequence of commands leading to the target. The second one shows how to
minimize the length of such a sequence.

A. Černá et al. Position Identification of Moving Agents in Networks

 – 20 –

6.1 Existence of Target Reaching Sequence of Commands

6.1.1 Theorem: Let G = (V, E) be a finite connected locally planar graph with at
least two vertices and with a marked edge (u, v). Let DG = (V, AG) be the
equivalent digraph with a marked arrow uv. Let C = {1, …, dmax} be the set of
commands, where dmax = max{d(w): w ∈ V}. Let us have δ(xy, c) = yz where yz is
the cth outgoing arrow from the vertex y for each c ∈ C and q = xy ∈ AG. Then
there exists a sequence of commands s = c1, …, cn such that for each q0 = xy ∈ Q =
AG the sequence (see 3.3) δ*(xy, s) starts in uv or ends in uv or passes through uv.

Proof: First, we introduce the denotation sr = c1, …, cn, cn+1, …, cn+m for s = c1,
…, cn, r = cn+1, …, cn+m as the concatenation of sequences s and r.

Since G is connected, the digraph DG is strongly connected and therefore there
exists a path in DG from xy to uv for each xy ∈ AG and therefore there exists a
sequence of commands s = c1, …, cn such that δ(xy, s) = uv.

1° Let us denote Q1 = AG – {uv}. If Q1 = ∅ we have finished, even for the empty
sequence Λ we have q ∈ AG ⇒ δ(q, Λ) = uv. If Q1 ≠ ∅ then we choose an
element q1 = x1y1 ∈ Q1. Let s1 be the sequence of commands with the property
δ(x1y1, s1) = uv.

2° Let us denote Q2 = AG – {uv, x1y1}. If Q2 = ∅ we have finished since δ*(q, s1)
starts or ends in uv for all q ∈ AG. If Q2 ≠ ∅ then we choose an element q2 = x2y2
∈ Q2. Let s2 be the sequence of commands with the property δ(δ(x2y2, s1), s2) =
δ(x2y2, s1s2) = uv.

3° Let us denote Q3 = AG – {uv, x1y1, x2y2}. If Q3 = ∅ we have finished since
δ*(q, s1s2) starts or ends in uv or passes through uv for all q ∈ AG. If Q3 ≠ ∅ then
we choose an element q3 = x3y3 ∈ Q2. Let s3 be the sequence of commands with
the property δ(δ(δ(x3y3, s1), s2), s3) = δ(x3y3, s1s2s3) = uv.

… etc. By induction we find a sequence s = s1s2…sm having the desired property.

6.1.2 If we have a marked target vertex v instead of target arrow uv, because of
connectivity of G there certainly exists an arrow uv ∈ AG and we can use the
sequence s from the theorem 6.2.1.

6.2 Minimization of Target Reaching Sequence of Commands

6.2.1 Theorem: Let G = (V, E), DG = (V, AG), uv and C be defined as in 6.1.1.
Let DδC = (AG, AGδ) be the transition digraph corresponding to the digraph DG
and the set of commands C (see 2.9) and let DδCRuv = (2AG–{uv}, AR) be the
reduced total digraph derived from DδC and uv (see 2.8). Let p be the shortest
path from the vertex AG–{uv} to the vertex ∅ in the graph DδCRuv and let s = c1,
…, cn be the sequence of colours of the arrows generating the path p. Then s is the

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 21 –

shortest sequence of commands such that for each q0 = xy ∈ Q = AG the sequence
δ*(xy, s) starts in uv or ends in uv or passes through uv.

Proof: 1) Let s = c1, …, cn be such a sequence of commands that for each q0 = xy
∈ Q = AG the sequence δ*(xy, s) starts in uv or ends in uv or passes through uv.
Since

δ*(q0, c1, …, cn) = q0, δ(q0, c1), δ(δ(q0, c1), c2), …, δ(…(δ(δ(q0, c1), c2), …, cn)

the sequence δ*(xy, s) represents a path containing the vertex uv in the coloured
transition digraph DδC.

Let the arrows of a path r starting in the vertex AG–{uv} in the reduced total
digraph DδCRuv have the colours c1, …, cn. Then the next vertices of the path are

δ(AG–{uv}, c1) = {δ(xy, c1): xy ∈ AG–{uv}}

δ(AG–{uv}, c1, c2) = {δ(xy, c1): xy ∈ AG–{uv}}

… etc.

and at least one of them (and all after it, if exist) must be ∅, because for each
xy ∈ AG–{uv} the sequenceδ*(xy, c1, …, cn) contains uv. Hence r is a path from
the vertex AG–{uv} to the vertex ∅ in the digraph DδCRuv.

2) Conversely, if r is a path from the vertex AG–{uv} to the vertex ∅ in the graph
DδCRuv and c1, …, cn are the colours of its arrows, then the sequence
δ*(xy, c1, …, cn) must contain uv.

This concludes the proof; the shortest path p represents the shortest sequence of
colours = commands s = c1, …, cn of the desired properties.

6.2.2 Example. Let us return to the example 5.2.1 (the graph from Fig. 1), to the
second part, when the marked target position is vx. The target finding sequence of
commands is 1, 1, 1, 2, 1, 1, 1, 2, 1, 1 (the stop at the end is not important). In the
digraph DδCRuv we have

AG–{vx} = {vy, xv, xy, xz, yv, yx, yz, zx, zy} 1→ {vy, xv, xy, yv, yx, yz, zx, zy} 1→

1→ {vy, xv, xy, yv, yx, yz, zx} 1→ {vy, xv, xy, yx, yz, zx} 2→ {xv, xz, yv, yz, zy}
1→

1→{vy, yv, zx, zy} 1→{xy, yv, yx} 1→{xv,yz} 1→{zy} 1→{yv} 1→ ∅

Real world interpretation. The supervisor of the network can use theorem 6.2.1
for two purposes:

• ascertaining that the network posses a synchronizing sequence

• finding the shortest one.

A. Černá et al. Position Identification of Moving Agents in Networks

 – 22 –

6.2.3 Theorem 6.2.1 solves the problem of marked target finding in the case
Ne/BLTe/N when the target is in “arrow” uv. As concerns the system Ne/BLTv/N
with a marked target vertex v, it is enough to replace the set AG–{uv} by the set
AG–{xv: xv ∈ AG}in the reduced total digraph.

Conclusion, Further Perspectives

We have shown that the position identification of agents moving in networks
possesses several important features:

• It represents a specific and interesting issue within the theory of agent
based systems.

• It has interesting practical applications. Among these, mainly the
transport ones are promising.

• It demonstrates interesting links between three branches of discrete
systems – finite transducers, coloured graphs and transportation.

Moreover, the authors hope that this paper can stimulate further studies oriented
mainly to the following directions:

D1 Generalizations, namely

• towards higher cleverness of agents,

• concerning random environment - e.g. the colouring of roads
perhaps partially damaged, etc.,

• extending the number of agents moving in the same network.

D2 New methods and algorithms solving concrete versions of the main
problem or of the auxiliary one.

References

[1] Adler, R., Goodwin, I., Weiss, B.: Equivalence of Topological Markov
Shifts, in Israel. J. Math 27 (1977), pp. 49-63

[2] Bonabeau, E.: Agent-based Modeling: Methods and Techniques for
Simulating Human Systems. In Proc.National Academy of Sciences 99
(2001) No. 3, pp. 7280-7287

[3] Černý, J.: Poznámka k. homogénnym experimentom s konečnými
automatmi, Mat. fyz. čas SAV 14 (1964), pp. 208-215 (in Slovak)

[4] Cicortas, A., Iordan, V.: A Multi-Agent Framework for Execution of
Complex Applications. Acta Polytechnica Hungarica 3 (2006), No. 3, pp.
97-119

[5] Culik, K. II, Karhumäki, J., Kari, J. A.: Note on Synchronized Automata
and Road Coloring Problem, in: Lecture Notes in Computer Science 2295
(2002), pp. 175-185

Acta Polytechnica Hungarica Vol. 7, No. 2, 2010

 – 23 –

[6] Erol, K.: A Study of Agent-based Traffic Simulation", Final Report,
FHWA, US DOT, 1998

[7] Frankovič, B., Dang,, Tung-T., Budinská, I.: Agents’ Coalitions Based on a
Dynamic Programming Approach. Acta Polytechnica Hungarica 4 (2007),
No. 2, pp. 5-21

[8] Fukuda, T., Hosokai, H., Otsuka, M.: Path Planning and Control of Pipeline
Inspection and Maintenance Robot, in IECON’88, Proc. 14th Annual Conf.
(1988) pp. 38-43

[9] Ginsburg, S.: On the Length of the Smallest Uniform Experiment which
Distinguishes the Terminal States of a Machine, in J. Assoc. Comput. Mach
5 (1958) pp. 266-280

[10] Göhring, W.: Minimal Initializing Word: A Contribution to Cerny's
Conjecture, in Journal of Automata, Languages and Combinatorics 4 (1997)
pp. 209-226

[11] Jungers, R. M., Blondel, V. D.: Observable Graphs, in arXiv:cs/0702091v1
[cs.MA] 16 Feb 2007

[12] Kelemen, J.: Agents from Functional-Computational Perspective, in Acta
Polytechnica Hungarica 3 (2006) No. 4, pp. 37-54

[13] Kranakis, E., Santoro, N., Sawchuk, C. and Krizanc, D.: Mobile Agent
Rendezvous in a Ring, Proceedings of the 23rd International Conference on
Distributed Computing Systems, May 19-22, 2003, p. 592

[14] Mateescu, A. and Salomaa, A: Many-valued Truth Functions, Cerny's
Conjecture and Road Coloring, in EATCS Bulletin 68, 1999, pp. 134-150

[15] North, M. J., Macal, C. M.: Managing Business Complexity: Discovering
Strategic Solutions with Agent-based Modeling and Simulation, Oxford
University Press: New York, NY, 2007 ISBN 0195172116

[16] Roman, A., Foryś, W.: Lower Bound for the Length of Synchronizing
Words in Partially Synchronizing Automata, in Sofsem 2008 (W. Geffert et
al. eds.), Springer Verlag Berlin, Heidelberg 2008, pp. 448-459

[17] Rystsov, I. K.: Reset Words for Commutative and Solvable Automata in
Theoret. Comput. Sci. 172 (1997), pp. 273-279

[18] Sebestyénová, J.: Case-based Reasoning in Agent-based Decision Support
System. Acta Polytechnica Hungarica 4 (2007), No. 1, pp. 127-138

[19] Trahtman, A. N.: The Road Coloring Problem, in arXiv:0709.0099 [es.DM]
21 Dec 2007

[20] Vaščák, J.: Navigation of Mobile Robots Using Potential Fields and
Computational Intelligence Means. Acta Polytechnica Hungarica 4 (2007)
No. 1, pp. 63-74

