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Abstract: The purposed work is the design of a nonlinear voltage and rotor angle 

controller to improve the stability properties of a system which comprises a synchronous 

generator connected to an infinite bus and hydraulic turbine. The controller is based on the 

feedback linearization scheme. The advantage of this systematic nonlinear controller 

design is that the control system is liberalized in a wider domain. A linear control can then 

be used to stabilize the linear system. The performances of the linear voltage and rotor 

angle regulators are compared with those of the standard linear voltage and speed 

regulators in the presence of short circuits at the generators. The infinite bus and the non-

linear regulator improved considerably the stability and the transient dynamic 

performance of the generator. 
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1 Introduction 

The control equipment of synchronous generators, such as an automatic voltage 

regulator, a speed governor and a power system stabilizer, are normally designed 

for a liberalized model of a power system around a given operating conditions. 

Therefore, when the operating condition or the network configuration changes 

widely, it may become less effective because of the non linearity of the power 

system. This became a very important problem in power systems. To solve this 

problem and to realize efficient control performance, many advanced studies have 

been done on generator control systems, such as adaptive generator controllers 

based on linear control theory[1] and self-turning power system stabilizers based 
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on adaptive control theory. The technique of input-output feedback linearization is 

now well known because it gives a good solution for tracking control problems 

[2]. This later one has been successfully applied to the control of AC motors and 

synchronous generators. The main goal of this paper is to investigate the 

application of a nonlinear control technic to a detailed multi-input, multi-output 

nonlinear model of a power system in order to improve both, its stability and 

damping properties even under large and sudden disturbances and to insure good 

post-fault voltage regulation [3]. 

2 Model of the System 

The generator is connected to an infinite bus through a transmission line having 

resistance Re and inductance Le. We applied classical Park’s transformation, and 

the model takes into account both field effects and damper-winding effects 

introduced by the different rotors circuits as follows: 
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Where: vd(t), vq(t) and vfd(t) are respectively the direct-axis, quadrature-axis 

terminal voltages, and excitation control input. 
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And : 

id(t), iq(t): direct-axis and quadrature-axis currents 

ikd(t), ikq(t): direct-axis and quadrature-axis damper windings currents 

ifd(t): field winding current 

Rs, Rkd, Rkq and Rfd: stator resistance, damper windings resistances, and field 

resistance 

Ld, Lq, Lfd: direct and quadrature self-inductances, rotor self-inductance 

Lkd, Lkq: direct and quadrature damper windings self-inductances 

Lmd inductance, Lmq: direct and quadrature magnetizing. 

The mechanical dynamics of the machine rotor are given in these equations: 
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Where: Te is the electromagnetic torque, and Tf is the resistant torque 

   Tm : mechanical  torque,  H : inertia constant,  ω : speed of the generator,  

F: the coefficient of friction,  : power angle of the generator Pm ,SR 

mechanic power and nominal power. 

The model of the synchronous machine connected to an infinite bus, the d-q 

terminal voltages vd and vq are given by the load equations. After using the Park’s 

transformation, we can write: 
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Where v is the rms value of the bus voltage and a is its phase angle. 
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2.1 Model of the Hydraulic Turbine 

The hydraulic turbine can be modeled by: 
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Where: q, g, Tw and At : flow in the conduit, gate opening ,water time constant, 

constant proportionality factor 
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2.2 Model of the Servomotor 

The servomotor is modelized by the block diagram of Fig. 1: 

 

Figure 1 

Model of the servomotor 

Where ka and ta successively the gate servomotor gain and time constant the 

regulator of voltage has as a role to maintain the final voltage of the generator in 

its face value of 1 per unit (p.u). It uses the seven state variables of the controlled 

system, which is the generator on the infinite bar, the measure of mechanical 

potency and reference of voltage. They assume of course that they can have state 

variables of the system. Otherwise, the non measurable variables can be estimated 

by observation. 

The generator linked to an infinite network is a system of order 7 state variables of 

which are currents id, iq, ifd, ikd and ikq, speed and internal angle. The input of the 

control is the voltage. 
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State equations of our system in p.u. in plan d-q are: 
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Pm, and y are the vector of state variables, u1 is the vector of control inputs. Aij and 

Ckl are constants which depend on the generator’s parameters [3]. 

3 Feedback Linearization of the System 

The first output to be chosen is the terminal voltage vt 
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The expressions of vd and vq as a function of the state variables can be obtained by 

combining equations (1) and (5) which gives equation (9) 

In order to obtain the nonlinear controller u1, we compute the time derivative of 

the output y. 
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We choose u1 that: 
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We obtain the linear differential equation in first order between the output and the 

new input. 

vy   (16) 

The relative degree corresponding to the output is: 

y=vt   is r1=1  

)()( refttreft vvkyykv    kt >0 (17) 

vref is the reference to terminal voltage. So that the linear control is low, the 

dynamic system feedback is: 
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    is the time constant 
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In case the dynamic tracking error “e” is: 

0 eke t  (21) 

A judicious choice of kt is necessary to assure a good tracking. 
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Successive derivations of the output give: 
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The relative degree corresponding to the output y2= is r2=3. 
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k1, k2 and k3 are real positive numbers, ref the reference of the rotor angle. 

The implementation of control v requires that stemming of the speed 

(acceleration) be available. It can seem problematic. Indeed, it is not always easy 

to have an accelerometer. However, it is necessary to point out that control v is no 

more and no less than P.I.D., the implementation of which is very well-known and 

well-controlled. 
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The dynamic equation of the system in a continuous closed loop is: 
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By identification, constants ki are easily determined as follows: 

     k3 = p3+p1+p2   

     k2 = p2p3+p1p2+p1p3 (31) 

     k1 = p1p2p3 

It is necessary to note that p3 must be a negative real pole and p1 and p2 two 

negative or complex real poles conjugated in negative real part. A way to choose 

poles p1, p2 and p3 is to make sure that the system in a continuous closed loop acts 

as a system of second control, having a time of stabilization tr and an overtaking d. 

The third pole is then chosen 10 times as big as the real part of poles. 
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3.1 Study of the Stability of the System 

The stability of the system in a closed loop depends on the internal dynamic which 

is determined from the dynamic of zero. In fact, the dynamic of zero is the internal 

dynamic when the system’s output is equal to zero. In our case, the output will be 

considered equal to the reference value. 

The proposed method consists in proving the stability of the dynamic of zero. If it 

is unstable, it should be offered a variant of the linear control which stabilizes the 

system in closed loop. 
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3.2 Study of Internal Dynamics 

Since the relating degree of the system is 3, so, internal dynamic is first rate. The 

variable of this dynamic must verify the next equation: 
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Then, they lead to deduce easily initial variables with respect to the new state 
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One can already point out that if internal dynamic is not stable (or if q tightens 

towards infinity) then state variable g will also strive towards infinity and vice 

versa. Even if g converges, then q also will converge. So, if it is unstable, the 

dynamic can be stabilized by a control which stabilizes state variable g. 

The derivate of internal variable allows us to acquire the equation of internal 

dynamics. 
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With Pe negative. 
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The dynamic of the zero is determined by putting the external variables equal to 

zero. By considering these variables constants, it doesn’t change final conclusion. 

Therefore, the dynamic of zero is: 
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One can conclude on stability or instability of the dynamics of zero by examining 

the derivative of f( ) at the equilibrium point. If it is negative, the system is 

stable. If it is positive, the system is unstable. 
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The internal dynamic is therefore unstable. So, it can be concluded that the system 

is unstable in a closed loop. The next stage is to offer a control which stabilizes 

the system in a closed loop. 

3.3 In a Continuous Closed Loop Stability 

The main purpose of the closed loop study of the system is to determine the 

condition stability of the state variable g. The stabilization of g will generate the 

stabilization of state variable q and consequently, the stabilization of internal 

dynamic. To this end, the expression of control is substitute in the dynamic 

equation of variable g. 
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v being a variant of the linear control equation (26) which will allow us to stabilize 

the system. After substitution of equation (41) in equation (40) and simplification, 

we obtain: 
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The previous dynamic equation becomes: 
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With gref as constant. 

It is then enough to choose k4 so that g is stable and converges towards gref. It is 

necessary to note that the choice of gains k1, k2 and k3 assures that v1 will 

converge on zero. 

To determine k4, equation (44) is linearized around a functioning point (g0,q0) and 

the condition ,0|
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(45) 

To assure the stability of the system whichever the point of operation is, it is 

necessity to choose k4 according to the following relation: 
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(46) 

The very upper condition (>>) allows to make k4 independent of the point (g0, q0) 

3.4 Stabilizing Control 

The new linear control which stabilizes external and internal dynamics is therefore 
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(47) 

Gains ki (i= 0,...,4)  are determined according to (31) and (46). 
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In this work, we start with a first resolution in which a simplifying hypothesis was 

taken into consideration, this hypothesis is based on two models acquired after 

decoupling of the total system, and therefore the controlled system will be on the 

order of 7. The input of its control is the excitation voltage and its output is the 

terminal voltage. As shown, in sequence resolution, this system is linearized by 

the linearization method by return of state, and then stabilized by a linear order, 

and the effectiveness of such strategy will be tested by simulation. 

4 Simulation 

This test consists in forcing at zero the voltage across the generator or infinite bus 

for 100 ms. The generator is initially charged to 60% at nominal power and not 

decoupled during the short-circuit from the network, which leads to important 

changes of the electric power. The role of power controller and rotor angle 

controller is to quickly maintain the terminal voltage and internal angle at their 

nominal values with minimum overshoot after the short-circuit. 

Here, we test the performance of the proposed SISO controller, which was tested 

on the complete 7
th

 order model of the turbine-generator system in a single 

machine infinite bus. The parameters are chosen from [1]. The stability of the 

system which is validated by simulating a short-circuit at the secondary of the 

generator’s transformer for a period of 100 ms. We compare the performance of 

both the non-linear controller and the linear controller [5]. In Figures 2 to 5 we 

show the response of the terminal voltage vt after a short-circuit in which it is 

shown the stabilization of vt. 
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Figure 2 

Terminal voltage vt 
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Figure 3 

Rotor Angle  

After using the non-linear controller, it is observed that the dynamics of the rotor 

angle has a much shorter time for the oscillations. The same remarks are made for 

the Figures 4 and 5. 
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Figure 4 

Terminal voltage vt 
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Rotor Angle  
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After the short-circuit the bus frequency and the rotor angle of generator stabilized 

2 to 4 times more rapidly and the terminal voltage came back at the first position 

twenty times more quickly than with the non-linear regulator. These performances 

assure for the network to resist at the important disturbance without losing it 

synchronism. 

Conclusion 

The considered machine in this work comprises synchronous generator and 

hydraulic turbine. We used for control the nonlinear regulator based on the 

feedback linearization. The controller is tested in simulation and compared with 

classical linear scheme. In conclusion, the controller is able to power system 

damping and the post fault regulation of the generator terminal voltage even after 

a large fault [6]. All these performance compensating nonlinear meet standard 

linear regulators are due to the fact that the linearization by feedback state ensures 

the validity of a priori linear control around the state space. The superiority of 

non-linear regulators is largely due to the inclusion of nonlinearities. However, the 

price is that with nonlinear control regulators efforts are bigger and the control 

laws are much more complex. Their implementation requires faster processors and 

are therefore more expensive [7], [8]. 
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