Some Categorial Aspects of the Dorroh Extensions

Dorina Fechete

University of Oradea, Department of Mathematics and Informatics Oradea, Romania e-mail: dfechete@uoradea.ro

Abstract: Given two associative rings R and D, we say that D is a Dorroh extension of the ring R, if R is a subring of D and $D = R \oplus M$ for some ideal $M \subseteq D$. In this paper, we present some categorial aspects of the Dorroh extensions and we describe the group of units of this ring.

Keywords: bimodule; category; functor; adjoint functors; exact sequence of groups; (group) semidirect product

1 Introduction

If *R* is a commutative ring and *M* is an *R*-module then the direct sum $R \oplus M$ (with *R* and *M* regarded as abelian groups), with the product defined by $(a, x) \cdot (b, y) = (ab, bx + ay)$ is a commutative ring. This ring is called the idealization of *R* by *M* (or the trivial extension of *M*) and is denoted by $R \ltimes M$. While we do not know who first constructed an example using idealization, the idea of using idealization to extend results concerning ideals to modules is due to Nagata [12]. Nagata in the famous book, Local rings [12], presented a principle, called the principle of idealization. By this principle, modules become ideals.

We note that this ring can be introduced more generally, namely for a ring *R* and an (R, R) - bimodule *M*, considering the product $(a, x) \cdot (b, y) = (ab, xb + ay)$.

The purpose of idealization is to embed M into a commutative ring A so that the structure of M as R-module is essentially the same as an A-module, that is, as on ideal of A (called ringification). There are two main ways to do this: the idealization $R \ltimes M$ and the symmetric algebra $S_R(M)$ (see e.g. [1]). Both constructions give functors from the category of R-modules to the category of R-algebras.

Another construction which provides a number of interesting examples and counterexamples in algebra is the triangular ring. If R and S are two rings and M is an (R, S) – bimodule, the set of (formal) matrices

$$\begin{pmatrix} R & M \\ 0 & S \end{pmatrix} = \left\{ \begin{pmatrix} r & x \\ 0 & s \end{pmatrix} : r \in R, s \in S, x \in M \right\}$$

with the component-wise addition and the (formal) matrix multiplication,

 $\begin{pmatrix} r & x \\ 0 & s \end{pmatrix} \cdot \begin{pmatrix} r' & x' \\ 0 & s' \end{pmatrix} = \begin{pmatrix} rr' & rx' + xs' \\ 0 & ss' \end{pmatrix}$

becomes a ring, called triangular ring (see [10]). If R and S are unitary, then $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ has the unit $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. If we identify R, S and M as subgroups of $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, we can regard $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ as the (abelian groups) direct sum, $R \oplus M \oplus S$. Also, R and S are left, respectively right ideals, and M, $R \oplus M$, $M \oplus S$ are two sided ideals of the ring $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, with $M^2 = 0$, $(R \oplus M \oplus S)/(R \oplus M) \cong S$ and $(R \oplus M \oplus S)/(M \oplus S) \cong R$. Finally, $R \oplus S$ is a subring of $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$.

If *R* and *S* are two rings and *M* is an (R,S)-bimodule, then *M* is a $(R \times S, R \times S)$ -bimodule under the scalar multiplications defined by (r,s)x = rxand x(r,s) = xs. The triangular ring $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ is isomorphic with the trivial extension $(R \times S) \ltimes M$ and conversely, if *R* is a ring and *M* is an (R,R)-bimodule, then the trivial extension $R \ltimes M$ is isomorphic with the subring $\begin{cases} a & x \\ 0 & a \end{cases}$: $a \in R, x \in M \end{cases}$ of the triangular ring $\begin{pmatrix} R & M \\ 0 & R \end{pmatrix}$.

Thus, the above construction can be considered the third realization of the idealization.

The idealization construction can be generalized to what is called a semi-trivial extension. Let R be a ring and M a (R,R)-bimodule. Assume that $\varphi = [-,-] : M \otimes_A M \to R$ is an (R,R)-bilinear map such that [x, y]z

= x[y, z] for any $x, y, z \in M$. Then we can define a multiplication on the abelian group $R \oplus M$ by $(a, x) \cdot (b, y) = (ab + [x, y], xb + ay)$ which makes $R \oplus M$ a ring called the semi-trivial extension of *R* by *M* and φ , and denoted by $R \ltimes_{\varphi} M$.

M. D'Anna and M. Fontana in [2] and [3] introduced another general construction, called the amalgamated duplication of a ring *R* along an *R*-module *M* and denoted by $R \bowtie M$. If *R* is a commutative ring with identity, T(R) is the total ring of fractions and *M* an *R*-submodule of T(R) such that $M \cdot M \subseteq M$, then $R \bowtie M$ is the subring $\{(a, a + x) : a \in R, x \in M\}$ of the ring $R \times T(R)$ (endowed with the usual componentwise operations).

More generally, given two rings R and M such that M is an (R, R)-bimodule for which the actions of R are compatible with the multiplication in M, i.e.

$$(ax) y = a(xy), (xy) a = x(ya), (xa) y = x(ay)$$

for every $a \in R$ and $x, y \in M$, we can define the multiplication

 $(a,x)\cdot(b,y)=(ab,xb+ay+xy)$

to obtain a ring structure on the direct sum $R \oplus M$. This ring is called the Dorroh extension (it is also called an ideal extension) of R by M, and we will denote it by $R \bowtie M$. If the ring R has the unit 1, the ring $R \bowtie M$ has the unit (1,0). Dorroh [5] first used this construction, with $R = \mathbb{Z}$, (the ring of integers), as a means of embedding a (nonunital) ring M without identity into a ring with identity.

In this paper, in Section 3, we give the universal property of the Dorrohextensions that allows to construct the covariant functor $\mathbf{D}: \mathfrak{D} \to \mathfrak{Rng}$, where \mathfrak{D} is the category of the Dorroh-pairs and the Dorroh-pair homomorphisms. We prove that the functor \mathbf{D} has a right adjoint and this functor commute with the direct products and inverse limits. Also we establish a correspondence between the Dorroh extensions and some semigroup graded rings.

L. Salce in [13] proves that the group of units of the amalgamated duplication of the ring *R* along the *R*-module *M* is isomorphic with the direct product of the groups U(R) and M° . In Section 4 we prove that in the case of the Dorroh extensions, the group of units $U(R \bowtie M)$ is isomorphic with the semidirect product of the groups U(R) and M° .

2 Some Basic Concepts

Recall that if S is semigroup, the ring R is called S-graded if there is a family $\{R_s : s \in S\}$ of additive subgroups of R such that $R = \bigoplus_{s \in S} R_s$ and $R_s R_t \subseteq R_{st}$ for all $s, t \in S$. For a subset $T \subseteq S$ consider $R_T = \bigoplus_{t \in T} R_t$. If T is a subsemigroup of S then R_T is a subring of R. If T is a left (right, two-sided) ideal of R then R_T is a left (right, two-sided) ideal of R.

The semidirect product of two groups is also a well-known construction in group theory.

Definition. Given the groups *H* and *N*, a group homomorphism $\varphi: H \to \operatorname{Aut} K$, if we define on the Cartesian product, the multiplication

 $(h_1, k_1)(h_2, k_2) = (h_1h_2, k_1 \cdot \varphi(h_1)(k_2)),$

we obtain a group, called the semidirect product of the groups H and N with respect to φ . This group is denoted by $H \times_{\varphi} N$.

Theorem. Let *G* be a group. If *G* contain a subgroup *H* and a normal subgroup *N* such that $H \cap K = \{1\}$ and $G = K \cdot H$, then the correspondence $(h, k) \mapsto kh$ establishes an isomorphism between the semidirect product $H \times_{\varphi} N$ of the groups *H* and *N* with respect to $\varphi: H \to \operatorname{Aut} K$, defined by $\varphi(h)(k) = hkh^{-1}$ and the group *G*.

Definition. A short exact sequence of groups is a sequence of groups and group homomorphisms

 $1 \longrightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$

where α is injective, β is surjective and $\operatorname{Im} \alpha = \ker \beta$. We say that the above sequence is split if there exists a group homomorphism $s: H \to G$ such that $\beta \circ s = \operatorname{id}_{H}$.

Theorem. Let G, H, and N be groups. Then G is isomorphic to a semidirect product of H and N if and only if there exists a split exact sequence

 $1 \longrightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$

3 The Dorroh Extension

To simplify the presentation, we give the following definition:

Definition 1. A pair (R,M) of (associative) rings, is called a Dorroh-pair if M is also an (R,R)-bimodule and for all $a \in R$ and $x, y \in M$, are satisfied the

following compatibility conditions:

(ax) y = a(xy), (xy) a = x(ya), (xa) y = x(ay).

We denote further with \mathcal{D} , the class of all Dorroh-pairs.

If $(R, M) \in \mathcal{D}$, on the module direct sum $R \oplus M$ we introduce the multiplication

$$(a,x)\cdot(b,y)=(ab,xb+ay+xy).$$

 $(R \oplus M, +, \cdot)$ is a ring and it is denoted by $R \bowtie M$ and it is called the Dorroh extension (or ideal extension (see [8], [11])). Moreover, $R \bowtie M$ is a (R, R)-bimodule under the scalar multiplications defined by

$$\alpha(a, x) = (\alpha a, \alpha x), \quad (a, x)\alpha = (a\alpha, x\alpha)$$

and $(R, R \bowtie M)$ is also a Dorroh-pair.

If *R* has the unit 1, then (1,0) is a unit of the ring $R \bowtie M$. Dorroh first used this construction (see [5]), with $R = \mathbb{Z}$, as a means of embedding a ring without identity into a ring with identity.

Remark 2. If *M* is a zero ring, the Dorroh extension $R \bowtie M$ coincides with the trivial extension $R \bowtie M$.

Example 3. If R is a ring, then (R, M) is a Dorroh-pair for every ideal M of the ring R. Another example of a Dorroh-pair is $(R, \mathcal{M}_{n\times n}(R))$.

Since the applications

$$\begin{split} &i_R: R \to R \Join M, \quad a \mapsto (a,0) \\ &i_M: M \to R \Join M, \quad x \mapsto (0,x) \end{split}$$

are injective and both rings homomorphisms and (R, R) linear maps, we can identify further the element $a \in R$ with $(a, 0) \in R \bowtie M$ and $x \in M$ with $(0, x) \in R \bowtie M$. Also, the application

 $\pi_R: R \bowtie M \to R, \quad (a, x) \mapsto a$

is a surjective ring homomorphism which is also (R, R) linear. Consequently, R is a subring of $R \bowtie M$, M is an ideal of the ring $R \bowtie M$, and the factor ring $(R \bowtie M)/M$ is isomorphic with R.

Remark 4. Given two associative rings *R* and *D*, we can say that *D* is a Dorroh extension of the ring *R*, if *R* is a subring of *D* and $D = R \oplus M$ for some ideal $M \subseteq D$.

If $(A, R), (A, M), (R, M) \in \mathcal{D}$, then *M* is an $(A \bowtie R, A \bowtie R)$ -bimodule with the scalar multiplication

 $(\alpha, a)x = \alpha x + ax$ and $x(\alpha, a) = x\alpha + xa$,

respectively, $R \bowtie M$ is an (A, A)-bimodule with the scalar multiplication

$$\alpha(a, x) = (\alpha a, \alpha x)$$
 and $(a, x)\alpha = (a\alpha, x\alpha)$.

Obviously, $(A \bowtie R, M), (A, R \bowtie M) \in \mathcal{D}$ and since,

$$((\alpha, a), x) + ((\beta, b), y) = ((\alpha + \beta, a + b), x + y),$$

$$((\alpha, a), x) \cdot ((\beta, b), y) = ((\alpha\beta, \alpha b + a\beta + ab), \alpha y + ay + x\beta + xb + xy),$$

respectively,

$$(\alpha, (a, x)) \cdot (\beta, (b, y)) = (\alpha + \beta, (a + b, x + y)), (\alpha, (a, x)) \cdot (\beta, (b, y)) = (\alpha\beta, (\alpha b + a\beta + ab, \alpha y + ay + x\beta + xb + xy)),$$

the rings $(A \bowtie R) \bowtie M$ and $A \bowtie (R \bowtie M)$ are isomorphic, and the isomorphism of these rings is given by the correspondence $((\alpha, a), x) \mapsto (\alpha, (a, x))$. Due to this isomorphism, further we can write simply $A \bowtie R \bowtie M$.

Example 5. If $R_1, ..., R_n$ are rings such that (R_i, R_j) are Dorroh-pairs whenever $i \leq j$, we can consider the ring $R = R_1 \bowtie R_2 \bowtie ... \bowtie R_n$. Since for any $i, j \in I_n$, $R_i R_j \subseteq R_{\max(i,j)}$, we can consider the ring R as a I_n -graded ring, where I_n is the monoid $\{1,...,n\}$ with the operation defined by $i \lor j = \max(i, j)$. Conversely, if a ring R is I_n -graded and $R = \bigoplus_{i \in I_n} R_i$, since $R_i R_j \subseteq R_{i \lor j}$ for all $i, j \in I_n$, the subgroups $R_1,...,R_n$ are subrings of R and R_j is a (R_i,R_i) -bimodule whenever $i \leq j$, the rings R and $R_1 \bowtie R_2 \bowtie ... \Join R_n$ are isomorphic.

Definition 6. By a homomorphism between the Dorroh-pairs (R,M) and (R',M') we mean a pair (φ, f) , where $\varphi: R \to R'$ and $f: M \to M'$ are ring homomorphisms for which, for all $\alpha \in R$ and $x \in M$ we have that

 $f(\alpha \cdot x) = \varphi(\alpha) \cdot f(x)$ and $f(x \cdot \alpha) = f(x) \cdot \varphi(\alpha)$.

The Dorroh extension verifies the following universal property:

Theorem 7. If (R,M) is a Dorroh-pair, then for any ring Λ and any Dorrohpairs homomorphism $(\varphi, f): (R,M) \to (\Lambda, \Lambda)$, there exists a unique ring homomorphism $\varphi \bowtie f: R \bowtie M \to \Lambda$ such that

 $(\varphi \bowtie f) \circ i_{_{M}} = f \text{ and } (\varphi \bowtie f) \circ i_{_{R}} = \varphi.$

Proof. It is routine to verify that the application $\varphi \bowtie f$, defined by

$$(\varphi \bowtie f)(a, x) = \varphi(a) + f(x)$$

is the required ring homomorphism.

Corollary 8. If (R,M) and (R',M') are two Dorroh-pairs, and $(\varphi, f):(R,M) \to (R',M')$ is a Dorroh-pairs homomorphism, then there exists a unique ring homomorphism $\varphi \bowtie d f: R \bowtie M \to R' \bowtie M'$ such that

 $\left(\varphi \bowtie f\right) \circ i_R = i_R \circ \varphi \ \, \text{and} \ \, \left(\varphi \bowtie f\right) \circ i_M = i_M \circ f.$

Proof. Apply Theorem 7, considering $\Lambda = R' \bowtie M'$ and the homomorphisms pair $(i_{R'} \circ \varphi, i_{M'} \circ f)$.

Consider now the category \mathfrak{D} whose objects are the class \mathcal{D} of the Dorroh-pairs and the homomorphisms between two objects are the Dorroh-pairs homomorphisms and the category \mathfrak{Rng} of the associative rings.

By Corollary 8, we can consider the covariant functor $\mathbf{D}: \mathfrak{D} \to \mathfrak{Rng}$, defined as follows: if (R,M) is a Dorroh-pair, then $\mathbf{D}(R,M) = R \bowtie M$, and if $(\varphi, f): (R,M) \to (R',M')$ is a Dorroh-pair homomorphism, then $\mathbf{D}(\varphi, f) = \varphi \bowtie f$.

Consider also the functor $\mathbf{B}:\mathfrak{Rng}\to\mathfrak{D}$, defined as follows: if A is a ring, then $\mathbf{B}(A) = (A, A)$ and if $h: A \to B$ is a ring homomorphism, $\mathbf{B}(h) = (h, h)$.

Theorem 9. The functor **D** is left adjoint of **B**.

Proof. If $(R, M) \in Ob\mathfrak{D}$ and $\Lambda \in Ob\mathfrak{Rng}$, define the function

$$\phi_{(R,M),\Lambda}: Hom_{\mathfrak{Rng}}\left(R \bowtie M, \Lambda\right) \to Hom_{\mathfrak{D}}\left((R,M), (\Lambda,\Lambda)\right)$$

by $\Phi \mapsto (\Phi|_{R}, \Phi|_{M})$, which is evidently a bijection.

Since, for any Dorroh-pairs homomorphism $(\varphi, f): (R, M) \to (R', M')$ and for any ring homomorphisms $\beta: \Lambda \to \Lambda'$ and $\Psi: R' \bowtie M' \to \Lambda$ we have that

$$\begin{split} (\beta,\beta) \circ (\Psi \mid_{R'},\Psi \mid_{M'}) \circ (\varphi,f) &= \left((\beta \circ \Psi \mid_{R'} \circ \varphi), (\beta \circ \Psi \mid_{M'} \circ f) \right) \\ &= \left((\beta \circ \Psi \circ i_{R'} \circ \varphi), (\beta \circ \Psi \circ i_{M'} \circ f) \right) \\ &= \left((\beta \circ \Psi \circ (\varphi \bowtie d f) \circ i_{R}), (\beta \circ \Psi \circ (\varphi \bowtie d f) \circ i_{M}) \right) \\ &= \left((\beta \circ \Psi \circ (\varphi \bowtie d f)) \mid_{R}, (\beta \circ \Psi \circ (\varphi \bowtie d f)) \mid_{M} \right) \end{split}$$

the diagram

$$\begin{array}{c|c} \operatorname{Hom}_{\mathfrak{Rng}}\left(R'\bowtie M',\Lambda\right) \xrightarrow{\phi_{\left(R',M'\right),\Lambda}} \operatorname{Hom}_{\mathfrak{D}}\left(\left(R',M'\right),\left(\Lambda,\Lambda\right)\right) \\ & & & \\ \operatorname{Hom}_{\mathfrak{Rng}}\left(\varphi\bowtie f,\beta\right) \\ & & & \\ \operatorname{Hom}_{\mathfrak{Rng}}\left(R\bowtie M,\Lambda'\right) \xrightarrow{\phi_{\left(R,M\right),\Lambda'}} \operatorname{Hom}_{\mathfrak{D}}\left(\left(R,M\right),\left(\Lambda',\Lambda'\right)\right) \end{array}$$

is commutative and the result follow.

Proposition 10. Consider $\{(R_i, M_i): i \in I\}$ a family of Dorroh-pairs and the ring direct products $\prod_{i \in I} R_i$ and $\prod_{i \in I} M_i$ (with the canonical projections p_i and π_i , respectively, the canonical embeddings q_i and σ_i)

Then $\left(\prod_{i\in I} R_i, \prod_{i\in I} M_i\right)$ is also a Dorroh-pair, for all $i \in I$, (p_i, π_i) and (q_i, σ_i) are Dorroh-pairs homomorphisms and

$$\left(\prod_{i\in I} R_i\right) \bowtie \left(\prod_{i\in I} M_i\right) \cong \prod_{i\in I} \left(R_i \bowtie M_i\right).$$

Proof. Since for all $i \in I$, (R_i, M_i) are Dorroh-pairs, $\prod_{i \in I} M_i$ is a $\left(\prod_{i \in I} R_i, \prod_{i \in I} R_i\right)$ bimodule with the componentwise scalar multiplications and evidently, the compatibility conditions are satisfied. Thus $\left(\prod_{i \in I} R_i, \prod_{i \in I} M_i\right)$ is a Dorroh-pair.

If
$$a = (a_i)_{i \in I} \in \prod_{i \in I} R_i$$
 and $x = (x_i)_{i \in I} \in \prod_{i \in I} M_i$, then for all $j \in I$,
 $\pi_j(a \cdot x) = a_j \cdot x_j = p_j(a) \cdot \pi_j(a)$ and $\pi_j(x \cdot a) = x_j \cdot a_j = \pi_j(a) \cdot p_j(a)$

respectively, if $i \in I$, $a_i \in R_i$ and $x_i \in M_i$, then

$$\sigma_i(a_i \cdot x_i) = q_i(a) \cdot \sigma_i(a)$$
 and $\sigma_i(x_i \cdot a_i) = \sigma_i(a) \cdot q_i(a)$

and so (p_i, π_i) and (q_i, σ_i) are Dorroh-pairs homomorphisms.

Proposition 11. Let *I* be a directed set and $\{(R_i, M_i)_{i \in I}; (\varphi_{ij}, f_{ij})_{i,j \in I}\}$ an inverse system of Dorroh-pairs. Then $\{(R_i \bowtie M_i)_{i \in I}, (\varphi_{ij} \bowtie f_{ij})_{i,j \in I}\}$ is an inverse system of rings and

$$\lim_{\leftarrow} (R_i \bowtie M_i) \cong (\lim_{\leftarrow} R_i) \bowtie (\lim_{\leftarrow} M_i).$$

Proof. Consider the elements $i, j \in I$ such that $i \leq j$. By Corolary 8, the Dorrohpairs homomorphism $(\varphi_{ij}, f_{ij}): (R_j, M_j) \to (R_i, M_i)$ can be extended to the ring homomorphism $\varphi_{ij} \bowtie f_{ij}: R_j \bowtie M_j \to R_i \bowtie M_i$ which is defined by

$$\left(\varphi_{ij} \bowtie f_{ij}\right)\left(a_{j}, x_{j}\right) = \left(\varphi_{ij}\left(a_{j}\right), f_{ij}\left(x_{j}\right)\right), \text{ for all } \left(a_{j}, x_{j}\right) \in R_{j} \bowtie M_{j}.$$

Obviously, $\left\{ \left(R_i \bowtie M_i\right)_{i \in I}, \left(\varphi_{ij} \bowtie f_{ij}\right)_{i, j \in I} \right\}$ is an inverse system of rings. Consider now $s, t \in I$ such that $s \leq t$ and $\left(a_i, x_i\right)_{i \in I} \in \lim_{\leftarrow} \left(R_i \bowtie M_i\right)$. Since $\left(a_s, x_s\right) = \left(\varphi_{st} \bowtie f_{st}\right) \left(a_t, x_t\right) = \left(\varphi_{st}\left(a_t\right), f_{st}\left(x_t\right)\right)$ we obtain that $\left(a_i\right)_{i \in I} \in \lim_{\leftarrow} R_i, \left(x_i\right)_{i \in I} \in \lim_{\leftarrow} M_i$ and the correspondence $\left(a_i, x_i\right)_{i \in I} \mapsto \left(\left(a_i\right)_{i \in I}, \left(x_i\right)_{i \in I}\right)$

establishes an isomorphism between $\lim_{\leftarrow} (R_i \bowtie M_i)$ and $(\lim_{\leftarrow} R_i) \bowtie (\lim_{\leftarrow} M_i)$.

4 The Group of Units of the Ring R⋈M

If A is a ring with identity, denote by U(A) the group of units of this ring.

Let (R, M) a Dorroh-pair where R is a ring with identity and consider the Dorroh extension $R \bowtie M$. In this section we will describe the group of units of the ring $R \bowtie M$. Firstly, observe that if $(a, x) \in U(R \bowtie M)$, then $a \in U(R)$.

The set of all elements of *M* forms a monoid under the circle composition on *M*, $x \circ y = x + y + xy$, 0 being the neutral element. The group of units of this monoid we will denoted by M° .

Theorem 12. The group of units $U(R \bowtie M)$ of the Dorroh extension $R \bowtie M$ is isomorphic with a semidirect product of the groups U(R) and M° .

Proof. Consider the function

 $\sigma_{u^{\circ}}: M^{\circ} \to \mathbf{U}(R \bowtie M), \quad x \mapsto (1, x),$

which is an injective group homomorphism. Consider also the group homomorphisms $i_{U(R)} : U(R) \to U(R \bowtie M)$ and $\pi_{U(R)} : U(R \bowtie M) \to U(R)$ induced by the ring homomorphisms $i_R : R \to R \bowtie M$ and $\pi_R : R \bowtie M \to R$, respectively. Since the following sequences

are exacts and $\pi_{\mathbf{U}(R)} \circ i_{\mathbf{U}(R)} = id_{\mathbf{U}(R)}$, the group of units $\mathbf{U}(R \bowtie M)$ of the Dorroh extension $R \bowtie M$ is isomorphic with the semidirect product of the groups $\mathbf{U}(R)$ and M° , $\mathbf{U}(R) \times_{\delta} M^{\circ}$. The homomorphism $\delta : \mathbf{U}(R) \to \operatorname{Aut} M^{\circ}$, is defined by $a \mapsto \delta_a$ where $\delta_a : M^{\circ} \to M^{\circ}$, $x \mapsto axa^{-1}$ and the multiplication of the semidirect product $\mathbf{U}(R) \times_{\delta} M^{\circ}$, is defined by

$$(a,x)\cdot(b,y)=(ab,x\circ(aya^{-1}))=(ab,x+aya^{-1}+xaya^{-1}).$$

The isomorphism between the groups $\mathbf{U}(R) \times_{\delta} M^{\circ}$ and $\mathbf{U}(R \bowtie M)$ is given by $(a, x) \mapsto (a, xa)$.

Remark 13. If M is a ring with identity, the correspondence $x \mapsto x-1$ establishes an isomorphism between the groups U(M) and M° , and therefore the group $U(R \bowtie M)$ is isomorphic with a semidirect product of the groups U(R) and U(M).

Corollary 14. The group of units $U(R \ltimes M)$ of the trivial extension $R \ltimes M$ is isomorphic with a semidirect product of the group U(R) with the additive group of the ring M.

Conclusions

The Dorroh extension is a useful construction in abstract algebra being an interesting source of examples in the ring theory.

References

- [1] D. D. Anderson, M. Winders, *Idealization of a Module*, Journal of Commutative Algebra, Vol. 1, No. 1 (2009) 3-56
- [2] M. D'Anna, A Construction of Gorenstein Rings, J. Algebra 306 (2006) 507-519
- [3] M. D'Anna, M. Fontana, *An Amalgamated Duplication of a Ring Along an Ideal: the Basic Properties*, J. Algebra Appl. 6 (2007) 443-459

- [4] G. A. Cannon, K. M. Neuerburg, *Ideals in Dorroh Extensions of Rings*, Missouri Journal of Mathematical Sciences, 20 (3) (2008) 165-168
- [5] J. L. Dorroh, *Concerning Adjunctions to Algebras*, Bull. Amer. Math. Soc. 38 (1932) 85-88
- [6] I. Fechete, D. Fechete, A. M. Bica, *Semidirect Products and Near Rings*, Analele Univ. Oradea, Fascicola Matematica, Tom XIV (2007) 211-219
- [7] R. Fossum, Commutative Extensions by Canonical Modules are Gorenstein Rings, Proc. Am. Math. Soc. 40 (1973) 395-400
- [8] T. J. Dorsey, Z. Mesyan, On Minimal Extensions of Rings, Comm. Algebra 37 (2009) 3463-3486
- [9] J. Huckaba, *Commutative Rings with Zero Divisors*, M. Dekker, New York, 1988
- [10] T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Springer-Verlag, 2001
- [11] Z. Mesyan, *The Ideals of an Ideal Extension*, J. Algebra Appl. 9 (2010) 407-431
- [12] M. Nagata, Local Rings, Interscience, New York, 1962
- [13] L. Salce, *Transfinite Self-Idealization and Commutative Rings of Triangular Matrices*, preprint, 2008