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Abstract: Algorithms to determine the minimum zone straightness and flatness have been 
successfully established by a number of researchers. This paper after presenting algorithms 
based on techniques borrowed from computational geometry focuses on the robustness and 
simplicity of the mathematical techniques. As the most resource consuming part of these 
algorithms is the determination of the convex hull, both in two and three dimensions, 
emphasize is given to them. Subsequently the complexity and implementation issues are 
discussed. The paper outlines an application using the described algorithms. 
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1 Introduction 

The geometric features of manufactured components are generally simple shapes 
like straight lines, planes, circles, spheres, cylinders and cones. These features can 
be checked by using specific gauges, but currently these tasks are more and more 
performed by coordinate measuring machines, because they are powerfull and 
flexible devices. Obtaining a set of datapoint representing accuratly the workpiece 
to be checked proved to be difficult. The measurement accuracy depends on the 
sampling schema, systematic errors, measurement uncertainty and the robustness 
and efficiency of the verification algoritms. 

Form tolerances attached to single features control how close to ideal form the 
feature must be. Form tolerances most commonly attached to planar surfaces are 
straightness and flatness. Accurate algorithms determining the deviation from the 
ideal feature will reduce the possibility to reject good workpieces. 
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2 Literature Overview 

Direct search methods for determining the minimum zone were first mentioned by 
Murthy and Abdin, who describe a simplex search method starting at the least-
square solution and terminating after a number of iteration. Anthony et al. discuss 
the theoretical basis behind the exchange algorithms, which are essentially 
geometrically based non-linear programming algorithms, and develop a feasible-
descent data exchange algorithm. They also describe a subset algorithm that starts 
with the solution to a subset of datapoints and iteratively adds points until all 
points are inside the solution boundary. Carr and Ferreira proposed a linear 
program model using the small displacement screw matrix to linearize the non-
linear constrains, and they used this technique to solve the minimum zone 
problem. Huang, Fan and Wu proposed the smallest parallelepiped enclosure 
method for spatial straightness error evaluation from the composition of two 
orthogonal planer straightness errors (vertical and horizontal). This solution 
cannot guarantee that the evaluated error has the same value in every direction. 
Kaiser and Krishnan developed a ‘brute force’ approach, which finds the 
minimum zone using a simple iterative algorithm by rotating the initial guess of 
the envelope lines. The process stops as the condition mentioned in the definition 
of straightness is reached. This algorithm was extended to determine flatness of a 
plane face. Samuel and Shunmugam used the computational geometric technique 
to solve the minimum zone and function-oriented solutions for the straightness 
and flatness problem. However, the flatness obtained from the 2-2 case was not 
taken into account in their algorithm. The paper by Lee deals extensively with the 
2-2 model and gives a solution based on the convex hull. Suen and Chang propose 
the application of neural networks to determine the minimum zone straightness 
and flatness using interval regression analysis. Zhang et al. state in their paper that 
finding the spatial straightness error based on the minimum zone condition can not 
be found using the simplified linearized model. They propose evaluation using the 
original nonlinear model. 

Algorithms to determine the minimum zone straightness and flatness have been 
successfully established by a number of researchers. Because the number of 
datapoints involved in the evaluation is not extremely large (usually less than 50) 
this paper focuses on the simplicity of mathematical techniques but at the same 
time keeps an eye on the efficiency as well. 

The paper begins with preliminaries presenting the definition of straightness and 
flatness as it is given in the standard [ANSI/ASME Y14.5M] followed by the 
description of the proposed algorithms based on techniques borrowed from 
computational geometry. Subsequently the performance of these algorithms and 
implementation issues are discussed. Finally an application using the described 
algorithms is presented. 
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3 Preliminaries 

In this paper the evaluation of straightness and flatness is considered in 
accordance with the ANSI/ASME Y14.5 and the ISO/R1101 standards and other 
related papers listed in the references. 

Straightness is a condition where an element of a surface is a straight line. A 
straightness tolerance specifies that each line element must lie in a zone bounded 
by two parallel lines separated by the specified tolerance and that are in the cutting 
plane defining the line element (Fig. 1). 
 

Figure 1 
Definition of the straightness with given datapoints 

Flatness is the condition of a surface having all elements in one plane. A flatness 
tolerance specifies a zone defined by two parallel planes separated by the specified 
tolerance within which the surface must lie (Fig. 2). 
 

Figure 2 
Definition of the flatness with given datapoints 
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The Lp-norm solution minimizes the following function: 
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Where n is the number of data points, di is the distance between the i-th datapoint 
and the ideal feature and 1≤p≤∞. The L2 norm the so-called least square-fit, 
widely used in coordinate measuring machine software, minimizes the sum of the 
squares of the residual errors di ; Min∑|di|2. The Chebyshev best-fit (L∞-norm 
solution) minimizes the maximum deviation from the ideal feature and results in a 
Min{Max|di|} objective function. The Chebyshev best-fit problem can be 
transformed into a non-linear constrained optimization problem. The solution of it 
requires iterative process whose convergence depends to a large extend on the 
initial guess. 

In case of straightness and flatness result from computational geometry based on 
the convex hull can be used to obtain the exact solution in a number of definitive 
steps. 

4 The Proposed Algorithm 

Because the problem we are considering here are essentially discrete from its 
nature we are looking for a robust solution in the context of combinatorial 
geometry. 

The following conditions must be met by the minimum zone straightness solution: 

 The minimum zone envelop lines must contact at least three datapoints. 

 These datapoints must be in a upper-line/lower-line/upper-line or a 
lower-line/upper-line/lower-line sequence. 

The algorithm determining the substitute line and the straightness error consists of 
two main steps: 

1 Computing the convex hull of the datapoints, resulting in a list of points 
in boundary traversal order. 

2 Determination of the substitute line for the convex pointset and the width 
of the convex hull in one step. 

For the determination of the convex hull of a planar pointset a number of 
algorithms have been invented in the recent past. Most widely known are: the gift 
wrapping, the quickhull invented by Preparata and Shamos, the Graham’s scan, 
the divide and conquer and the incremental algorithms. While the Graham’s scan 
provides the solution in optimal time, O(nlogn) it has no obvious extension to 
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three dimension. Therefore other solution having similar execution property was 
taken into consideration. It is the modified incremental algorithm: 

The first convex hull is the triangle p0,p1,p2 . Let Q=Hk-1 and p=pk. The 
computation of Hk falls into two cases: if pkЄQ (even on the boundary) it can be 
discarded. pk is not in Q than the convex hull should be modified. Therefore we 
need only to find the two tangent lines from p to Q. pi is a tangency point if for 
two subsequent edges the LeftOn test (on which side of the line the point is) gives 
different results. This is shown in the subsequent figure. 

Figure 3 
Detemination of the tangency lines from p to Q 

The algorithm runs in O(n2) time. However by sorting the points by their x 
coordinates this can be decreased to O(nlogn). 

Given the points of the convex hull the next step is the computation of the 
substitute line and the width of the convex hull. The boundary lines of the 
minimum zone are determined by three points: two of them defining one envelope 
line is colinear with one of the edges of the convex hull, the third one is a point 
with the maximum perpendicular distance to this line. The algorithm next does the 
job in O(n2) time, where n is the number of extreme points on the convex hull: 

Let H2 ← convex_hull{p0,p1,p2} 

for k = 3 to n-1 do 

Hk ←convex_hull{Hk-1 U pk} 
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The substituting line is defined by the points (pl+pm)/2 and (pl+1+pm)/2. The 
envelop lines are given respectively by pl, pl+1 and pl,pm-pl+pl+1. 

Analogically the minimum zone flatness solution must satisfy the following 
conditions: 

 The minimum zone lines must contact at least four datapoints. 

 If the four contact points form a 2-2 model (two points contacting each 
plane), the line connecting the two upper plane points will intersect the 
line connecting the two lower plane points when the points are projected 
onto the same plane. 

 If the four contact points form a 3-1 model (three points contacting one 
plane and one point contacting the other plane), the single point must be 
inside the triangle formed by the three points on the other plane when the 
points are projected onto the same plane. 

From the above properties it be came obvious that the datapoints defining the 
minimum zones are vertex points on the convex hull of the original dataset. The 
straightness error is equal to the distance between the one data point and the line 
spanned by the two other points while the flatness error is given by the distance 
between the two lines (in case of the 2-2 model) or by the distance between the 
point and the plane determined by the three points (3-3 model). 

The overall structure of the algorithm is the same as in two dimensions. In each 
step the computation of the new convex hull is again the main problem. If p is 
inside Q then it is discarded. If not the cone with apex pi and tangent to Q is 
computed. It is clear that those faces are to be discarded which are visible from pi. 

d=0 
for i = 1 to n  

{c=0, j=i+2 
while j<2n dist(ei,pj)>d  {c= dist(ei,pj), j=j+1}  
if d<c {d=c, l=i, m=j-l} 
} 
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Figure 4 

Convex hull before and after adding a point 

The incremental convex hull algorithm is summerized as follows: 

Since the loops marking the visible faces and constructing the cones are inbedded 
inside a loop that iterates n times the complexity of the algorithm is O(n2). 

Given the points of the convex hull the next step is the computation of the 
substitute planes and the width of the convex hull. The boundary planes of the 
minimum zone are determined by the 3-1 model: the minimum distance between 
the face defined by three points and one point with the maximum perpendicular 
distance to this line. The algorithm next does the job in O(m2) time, where m is the 
number of edges on the convex hull: 

 

Initialize H3 to tetrahedron (p0,p1,p2,p3) 
for i = 4 to n-1 do 
for each face f of Hi-1 do 

Mark f if visible 
if no faces are visible  

then dicard pi (it is inside Hi-1) 
else  

for each border edge e of Hi-1 do 
Construct cone face determined by e and pi 

for each visible face f do 
Delete f 

Update Hi 
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5 Implementation Issues 

The computation of straightness is straightforward, it does not require any 
particular datastructure. In the three dimensional case the topology both of the 
polytope and the convex hulls should be explicitly represented in order to speed 
up the search processes. For its effectiveness the socalled quad-edge data structure 
invented by Guibas and Stolfi for the representation of any subdivision 2-
manifolds was selected. 

In the data structure each edge record is part of four circular lists. Two list are the 
lists for the endpoints and two lists reperesent the adjacent faces. Members of the 
list are linked by pointers. By introducing convention for the loops representing 
the faces boundary the direction of the surface normal vector are defined 
implcitly. Using this information the hidden faces can be easily be determinated 
and eliminated. 

d=0 
for i = 1 to n  

Compute the equation of the face fi from it’s cornerpoints 
for j = 1 to n 
Determine the distance of the point pj from the face 
if  dist(pj,fi) > d then d = dist(pj,fi) 

for i =1 to m 
     for j = 1 to m 
             if dist (ei, ej) > d then d = dist (ei, ej) > d 
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6 The Host Application 

As the problem was raised in connection with the calibration on straight edges and 
on a coordinate measuring machine it was an obvious choise to implement the 
above described algorithm within the calibration software. It is written in Visual 
Basic and receives data from an Excel table. The output is the final calibration 
certificate while the data values and the evaluation result are archived. 

 
Figure 5 

The user interface of the calibration software 

Conclusions 

The paper describes a simple robust algorithm for determining the straightness and 
flatness of surface features. The algorithm was implemented as part of a software 
package supporting the calibration of gauges and it is currently in usage. It’s 
price/performance ratio is superior to other software currently available on the 
market. 
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