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Abstract: This paper provides two approaches for design of Generalized Predictive Control 
(GPC) algorithm for a non-linear dynamic system. In the classical approach of the GPC 
strategy the recursive method of least square is considered for calculating of the linearized 
model parameters from the known analytic description of a particular non-linear system. 
The other purpose of this paper is to show an intelligent approach in which a feed-forward 
neural network (Multi Layer Perceptron – MLP) is used for modeling the same non-linear 
system within the frames of the predictive control. The possibility of on-line estimation of 
an actual parameters from the off-line trained neural model of the non-linear system by 
means method of the instantaneous linearization in each sample point is considered in GPC 
algorithm design. The validity of classical and neural GPC strategy is tested by computer 
simulations in Matlab/Simulink language using architecture of S-functions of the library 
PredicLib. 
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1 Introduction 

Model Predictive Control (MPC) is one of the most wide spread advanced control 
techniques for dynamic systems in the industry. The main idea of MPC algorithms 
is to solve an optimization problem in order to find the control vector trajectory 
that optimizes the cost function over a future prediction horizon [2], [3]. 

This paper provides two approaches for the design of Generalized Predictive 
Control (GPC) algorithm for non-linear systems. In the classical approach of GPC 
strategy (part 2) the recursive least square method (RLSM) is considered for the 
calculation of the linearized model parameters from the known analytic 
description of the dynamic system [8]. In the intelligent approach is a feed-
forward neural network (Multi Layer Perceptron – MLP) used for modeling and 
the estimation of the actual parameters of the non-linear system which are 
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considered in GPC design (part 4-6). The neural model of non-linear system is 
typically trained in advance, but the GPC controller is designed on-line using the 
parameter estimation from the neural model. The main idea of this paper is to 
show how on-line estimation of the actual parameters from off-line trained neural 
model using the gain matrix is applied in the GPC algorithm [5]. The neural model 
of non-linear system is linearized by means method of the instantaneous 
linearization in each sample point and the result of this linearization technique – 
the estimated parameters from neural ARX model (NARX) of the system are used 
for design of the GPC algorithm (part 6). The practical simulations by the 
language Matlab/Simulink, Neural Toolbox and the library PredicLib [6] of this 
paper illustrate that the classical GPC and the neural GPC strategies using 
linearization technique can be used for predictive control of a particular non-linear 
dynamic system. 

2 GPC Algorithm - Classical Approach 

The calculating of the cost function for optimal control for the k-th step can be 
considered as 

2
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where for the predictive horizons holds 1 1N ≥ , 2 1 2, 1 uN N N N≥ ≤ ≤ , λ is the 
positive weight coefficient and ˆ( / ) ( / ) ( / )e k j k y k j k r k j k+ = + − +  is the prediction 
error, where ˆ( / )y k j k+ is the predicted system output value and ( / )r k j k+  is 
the system output required value. By [8] the most SISO (Single-Input/Single-
Output) systems when is considered the operation around a particular set-point 
and after linearization can be described by the linear discrete AutoRegresive model 
with eXternal input (ARX). Using the modification of ARX model we can get 
CARIMA (Controlled AutoRegresive Integrate Moving Average) model which is 
used in GPC algorithm [2] and is described by eq. (2) 
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where A(q-1), B(q-1), C(q-1) are the polynomials of the delay operator q-1: 
1 1 2 1 1 2

1 2 0 1 2
1 1 2

1 2

( ) 1 ... , ( ) ... ,

( ) 1 ...

na nb
na nb

nc
nc

A q a q a q a q B q b b q b q b q

C q c q c q c q

− − − − − − − −

− − − −

= + + + + = + + + +

= + + + +
 

In the equation (2) ( )kξ  is a white noise with zero mean and 11 qΔ −= − . 
According [2] the future output value of the system is given by (3) 
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1 1 1ˆ( / ) ( ) ( 1) ( ) ( 1) ( ) ( )j j jy k j k G q u k j q u k F q y kΔ Γ Δ− − −+ = + − + − +  (3) 

In the equation (3) the polynomials 1( )jG q− , 1( )j qΓ −  and 1( )jF q−  are calculated 
by solving of Diophantine equations: 
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The predictor (3) can be written as 
1 1ˆ ( ) ( ) ( ) ( 1)q y k q u kΔ− −= + + −y GΔu F Γ  (4) 

where 
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Because two last items of (4) depends only on the previous states, we can include 
those into one item  f, then the equation of the predictor is  ŷ = GΔu + f. The cost 
function (1) can be written in the matrix form for the computing of an optimal 
control 

( ) ( )T TJ λ= + − + − +GΔu f r GΔu f r Δu Δu  (5) 

where [ ]1 1 2( ), ( 1),..., ( ) Tr k N r k N r k N= + + + +r is the reference trajectory and λ 
is the weight coefficient. 

The equation (5) can be written as 

0
1
2

T TJ = + +Δu HΔu b Δu f  (6) 

where  2( )T λ= +H G G I ,  2( )T T= −b f r G ,  0 ( ) ( )T= − −f f r f r . 

The minimum of the cost function J can be found by making gradient of J equal 
to zero, which leads to 

1 1( ) ( )T Tλ− −= − = − + −Δu H b G G I G f r . (7) 
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The result of this equation is the trajectory consisting from the increments of the 
control signal and the first of them is applied on the system and is given by: 

( ) ( )u kΔ = −K r f , where K is the first row of the matrix 1( )T Tλ −+G G I G , so an 
actual controller output value is ( ) ( 1) ( )u k u k= − + −K r f . 

For the systems with the constrains on the controller output value, on the 
controller increment output value or on the system output value, the vector Δu is 
calculated by function quadprog of Optimization Toolbox of the language Matlab 

Δu = quadprog (H, b T, LCON, v, UMIN, UMAX), where  UMIN ≤ Δu ≤ UMAX ,  LCON Δu ≤ v. 

The vectors UMIN  and UMAX  are the column vectors those elements are minimal and 
maximal values of Δu(k). With using the matrix LCON  and the vector v can be 
defined the system of an inequalities which insures that constrain conditions will 
be satisfied [6]. 
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In the programmable environment Matlab/Simulink was designed GPC algorithm 
for the dynamic non-linear SISO system using S-functions. 

Algorithm GPC for the calculation of the control signal value for the k - th step: 
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1 reading of the polynomials A(q-1), B(q-1), C(q-1) of the linearized discrete 
model (2) of the non-linear system, the reference vector trajectory r(k) and the 
output of the system y(k), 

2 cyclical calculating of the polynomials Gj(q-1), Γj (q-1) and  F(q-1) by solving 
Diophantine equations for  j = 1, 2, .., N2, 

3 creating of the matrixes G,  Γ and  F, 

4 if is required the constrain for the values of u(k), Δu(k) or y(k), then continue 
by the step 8, 

5 calculating of the feedback gain of the control vector K, 

6 calculating of the controller output increment Δu(k) = K (w – f), 

7 continue by the step 12, 

8 creating of the matrix  LCON  and vectors  v, UMIN, UMAX, 

9 calculating of the matrixes  H and  b T, 

10 Δu = quadprog(H, b T, LCON, v, UMIN, UMAX), 

11 Δu(k) is the first element of the vector Δu, 

12 u(k) = u(k-1) + Δu(k),  k = k+1 and continue by the step 1. 

3 Verification of GPC Algorithm for a Non-linear 
System by Simulation 

The simulation model of the non-linear system consists of two tanks, one 
cylindrical and the other spherical with the free outflow. The inflow to the first 
tank is controlled by the relative open of the valve V1. The outflow from the first 
tank is an inflow to the second one. 

The physical variables and the parameters of the hydraulic system which is 
described in Fig. 1 are: 

h1(t) [m] - the water level in cylindrical tank, 

h1MAX(t) [m] - the max water level in cylindrical tank, 

h2(t) [m] - the water level in the spherical tank, 

h2MAX(t) [m] - the max water level in the spherical tank, 

M1 (t) [kg/s] - the mass inflow to the cylindrical tank, 

M2 (t) [kg/s] - the mass inflow to the spherical tank, 
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M3 (t) [kg/s] - the mass outflow from  the spherical tank, 

MZ1 (t) [kg/s] - the disturbance mass inflow to the cylindrical tank, 

MZ2(t) [kg/s] - the disturbance mass inflow to the spherical tank, 

u1(t) -  the rise of an input outlet of the cylindrical tank, 

S [m2] - the tank’s bottom area, 

S1 [m2] - the area of the outflow of the cylindrical tank, 

R [m] - the diameter of the spherical tank, S2 [m2] is the outflow space of spherical tank. 

 
Figure 1 

Model of the hydraulic system 

For changing the levels h1(t) and h2(t) according to [6] it holds that 

( ) ( )

1
1 2 1

2 2
2 2 2 3 2
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ρπ
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− = − +
 (8) 

The mass flows M1(t), M2(t) and  M3(t) can be described by the equations (9), 
where kV1 is the constructing constant of the input outlet of the cylindrical tank and 
f(u1(t)) is characteristic function of the valve V1 

1 1 1 1 2 1 1 3 2 2( ) ( ( )) , ( ) 2 ( ), ( ) 2 ( )V MAXM t k f u t M M t S gh t M t S gh tρ ρ= = =  (9) 
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The mass inflow M1(t) depends on the relative open value of 1( ) 0,1∈u t  and on 
the value of maximal mass inflow M1MAX.  Let the function f(u1(t)) be linear. Then 
the equation for the mass inflow can be written as 

1 1 1 1( ) ( )V MAXM t k u t M=  (10) 

After inducting equations (9) and (10) to the equations (8) we obtain non-linear 
differential equations (11) describing dynamics of the changing levels in the 
simulation model - two tanks without interaction 

1 1 1 1 1 11
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V MAX Z
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dt Rh t h t

ρ
ρ
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− +
=

− +
=

−

  (11) 

By expansion to Taylor series for the set-point SP = [u10, h10, h20] we obtain the 
linearized model, which can be written by Laplace transformation as transfer 
functions 

2 1/ ( )H UF s  and then using Z-transformation can be obtained the discrete 

transfer function of the dynamic system ( ) ( ) ( )/F z B z A z= . 

For verification of designed GPC algorithm was used the simulation language 
Matlab/Simulink. The functional block of GPC controller is included into the 
library PredicLib [6]. The parameters of the simulation model of the hydraulic 
system are  M1MAX = 500kg/s,  h1MAX = 6m,  S = 7.07m2,  S1 = 0.0314m2,  R = 1.5m,  
S2 = 0.0314 m2 and  ρ = 1000 kg/m3. 

For the calculation of the linearized model parameters the recursive method of the 
least square was used for the set-point SP that corresponds to the actual value of 
the system output h2(t). After conversion of the discretized transfer function to 
time area operator z is substituted with operator q. By this way the polynomials 
A(q-1) and  B(q-1) of the discrete CARIMA model (2) can be acquired. The 
polynomial C(q-1) is time invariant and is chosen to be equal to one. The orders of 
discrete model´s polynomials are na = 2, nb = 2  and  nc = 0. 

The prediction horizon for the output of the system is chosen on ten steps forward 
and for the control signal on five steps, so N1 = 1, N2  = 10, Nu = 5. The sample 
period is TVZ = 10s. 

Next is necessary to consider the constrains for the control signal value and the 
system output value because 1( ) 0,1∈u t  and 2 ( ) 0,3∈h t . The weight 
coefficient for the control signal value increment Δu(t) is λ=0.1. 

The control scheme of the simulation in an environment Matlab/Simulink is 
described in Fig. 2. 
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Figure 2 
The simulation predictive control scheme – classical approach 

On the output of the system have effect disturbance in the form of the white noise 
that simulates the measurement error. Also the disturbance mass inflows MZ1 and 
MZ2 act on the system. 

The disturbance mass inflow to the cylindrical tank has value MZ1 = 50kg.s-1 and 
acts on in time from 2500s to 3500s. The disturbance mass inflow to the spherical 
tank have value MZ2 = 20kg.s-1 and acts on in time from 6500s to 7500s. 

The result of tracking of the reference trajectory ref(t) by the system’s output h2(t) 
using GPC algorithm is on Fig. 3. The output of the GPC controller – the optimal 
control signal u1(t) is described in Fig. 4. 
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Figure 3 

Tracking the reference trajectory ref(t) by the output of the non-linear system h2(t) 
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Figure 4 

The GPC controller output – control signal u1(t) 

4 Predictive Control Structure Using Parameter 
Estimation from a Neural Model 

Next we will consider about the GPC algorithm design for a non-linear system 
(hydraulic two tanks system) using the neural model of NARX structure [2], [7]. 
The predictive control scheme using the estimation the system parameters from 
off-line trained neural NARX model, which are applied in the algorithm of GPC, 
is illustrated on Fig. 5. 

estimated parameters

a ki( ), b ki( )

GPC
controller

Process

Prediction output
of the process

Neural model
of process

y kref( )
u k( ) y k( )

 
Figure 5 

The predictive control scheme based on the neural model - intelligent approach 

The loop consists of the controlled non-linear hydraulic system described by the 
equations (11), the neural process model of NARX structure and GPC controller. 
Because GPC algorithm needs parameters of a linear model of the dynamic 
system, in this paper a linear model is extracted from the non-linear neural NARX 
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model by calculation of the gain matrix (part 5). The estimated parameters of the 
dynamic system from off-line trained neural model are applied for the calculation 
of the predictor by algebraic theory which is used in GPC algorithm [5], [6]. The 
optimal predictive controller output vector optuΔ is determined by minimization of 

the cost function (1). The first term in the cost function refers to the square 
variation of the predicted system output from the desired reference trajectory, 
while the second term is added in order to limit the controller output, greater λ  
yields less active the controller output. The first element of the calculated optimal 
controller output vector is directed to the hydraulic system input. The remaining 
vector elements are not utilized and the entire procedure is repeated at the time 

( )1 VZt k T= + , (the principle of receding horizon) [3]. The first prediction horizon 

1N is usually chosen to be 1. The choice of the second prediction horizon 2N  and 
the control horizon uN are: 2N is usually chosen as to cover the most of the 
control system’s transient, while uN , which denotes the significance of the future 
controller outputs shouldn’t be greater then 22 /N . 

5 Neural Model of a Non-linear Dynamic System 

In this part we will discuss some basic aspects of the non-linear system 
identification using from among numerous neural networks structures only Multi-
Layer Perceptron – MLP (a feed-forward neural network) [1], [9] with respect to 
the model based neural predictive control, where the control law is based upon the 
neural model. We will use in this paper a feed-forward neural network MLP with 
a single hidden layer. This structure is shown in the matrix notation in Fig. 6 [5], 
[7]. The matrix 1W  represents the input weights, the matrix 2W  represents the 
output weights, hF  represents a vector function containing the non-linear (tanh) 
neuron functions. The “1” shown in Fig. 6 together with the last column in the 
matrix 1W  gives the offset in the network. The network input is represented by 

vector iZ n  and the network output is represented by vector outZ
)

. The mismatch 

between the desired output outZ  and an aproximated output outZ
)

 is the prediction 
error E . 

The output from the neural network MLP can be written as 

0
2 2 1 1

⎛ ⎞⎡ ⎤
= ⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
h

Y
X W F W . (12) 

From a trained MLP by Back-Propagation Error Algorithm (BPA – the first-order 
gradient method) a gain matrix M  can be found by differentiating with respect to 
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the input vector of the network. The gain matrix M  can be calculated using (12) 
as 

( )2 2 1 1
2 1 1

o 1 1 o

ˆ
. . . . *Z X X Y X

M W F ´ W
Z Y Y X Y

out
hT T T T

in

d d d d d
X

d d d d d
= = = =  (13) 

where *
1 1W W  (excluding the last column). 

The above mentioned the gain matrix M  allows an on-line estimation of the 
actual parameters from an off-line trained neural model of the non-linear system. 

 
Figure 6 

The matrix block diagram of the neural network MLP 

With the inspiration from linear ARX model described in [8], next we will use a 
general model structure suitable for representing the dynamics of a wide range of 
non-linear system – neural ARX model (NARX) [4], [10], which is defined by 

( ) ( ) ( ) ( ) ( )( )θUUYYFY ,mk,...,k,pk,...,kkˆ
N −−−−= 11  

( ) ( ) ( )kkˆk EYY +=  (14) 

where NF  is the unknown non-linear vector function to be approximated, E(k) is 
the prediction error, p and m denote the number of delayed outputs and inputs. The 
non-linear mapping NF  can be approximated by a feed-forward neural network, 
e.g. MLP. The feed-forward neural network NF  is configured to represent the 
NARX model by applying p  delayed values of the system output and m  delayed 
values of the system input to the network inputs and assigning it’s output Ŷ(k) to 
be Y(k), θ is the vector of the network parameters. 

An optimal value of the network parameters is usually obtained by using a training 
algorithm BPA that minimizes the following cost function: 

( ) ( ) ( )( )2

1

ˆ ,J i i
=

= −∑
N

NN
i

Y Yθ θ  (15) 

on the basis of this gradient with respect to the network parameters. N  in 
equation (15) is the length of input-output data set used for the network training. 

Y0 
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Zout 
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We will consider that the neural NARX model has the input vector Zin and the 
output vector outẐ : 

( ) { ( 1), , ( ), , ( 1), , ( )}
ˆ ˆ( ) ( )

n

out

k k k p k k m

k k

= − − − −

=

K K KiZ Y Y U U

Z Y
 (16) 

After training the neural network MLP by BPA the actual gain matrix  M(k) can 
be on-line estimated and calculated for neural ARX model as 

( ) ( )
( )

( )
( ) ( ){ }

( ) ( ) ( ) ( ){ }1 1

ˆ ˆ

1 ............

ˆ ˆˆ ˆ

out
T T
in

p m

d k d k
k

d k d k k m

a k a k b k b k

= = =
− −

= − −K K

Z Y
M

Z Y U  (17) 

where ( )kâi  for i=1,…, p,  ( )kb̂i   for   i = 1, …, m  are estimated parameters of 
the neural NARX model for step k . Using the method of an instantaneous 
linearization we can extract the parameters of the dynamic system from an off-line 
trained neural model using the gain matrix [5], [6] instead an estimation 
parameters of the linear model by the method of the least square. The GPC 
algorithm uses these estimated parameters from the neural model for control 
signal calculation. 

6 Simulation Results of GPC Algorithm based on 
Neural Model – Intelligent Approach 

The results of the estimation the system parameters from an off-line trained neural 
NARX model and their application in GPC algorithm using an algebraic theory 
are presented for a non-linear test SISO system – two tanks system (11). The 
output of the system is the water level in the second tank ( ) ( ).thty 2= . We consider 
NARX model with 4 inputs and 6 neurons in the hidden layer. The activation 
functions in the hidden layer are „tanh“ functions and in the output layer is 
selected a linear function. The actual values of the estimated parameters can be 
obtained from the gain matrix ( )kM  by (17). 

The GPC algorithm in the k - th step consists the following calculations: 

1  the real output of the system (11) ( )ky  is measured, 

2  the calculation of the linearized parameters ii b̂,â  from the neural NARX 
model by the gain matrix (17), 
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3 the estimated parameters are implemented in the GPC algorithm and an 
optimal control value is obtained by minimized the cost function (1), 

4 an optimal control value is applied on the system input, 

5 k = (k+1)TVZ  and go to step 1. 

The implementation of the resulting GPC controller including a neural network 
model for parameter estimation is shown on Fig. 7. 
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Figure 7 

The GPC control scheme using neural model 

The presentation of the results of GPC strategy using on-line parameter estimation 
from an off-line trained neural model is illustrated on Figs. 8 and 9, where the 
noise of measurement – the white noise is added to the output of the system (11) at 

105101 21 .,N,N,N u =λ=== . The disturbances input flows are added to the 
input of the non-linear system. 

The plot on Fig. 8 compares the reference output of the system h2ref(t) and the 
actual output of the closed-loop system h2(t). A perfect model-following behaviour 
is achieved, although we can see an oscillating control signal on Fig. 9. This 
simulation example shows the possibility of an application of the neural modeling 
using the structure ARX known from the theory of the linear identification and 
also the possibility to apply GPC algorithm known from linear control theory for 
the control of non-linear SISO systems which have no the hard nonlinearities in 
the control structure in Fig. 5. 
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Figure 8 

Tracking the reference trajectory ref(t) by the output of the non-linear system h2(t) using the parameter 
estimation from neural NARX model 
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Figure 9 

The control signal of the GPC controller based on parameter estimation from neural NARX model 

The library PredicLib is created as a software tools by Simulink and Matlab 
language built-in functions. It contains blocks of Model Predictive Control (MPC) 
algorithms, concrete GPC algorithms for SISO and MIMO systems and MPC 
algorithms based on the state space model of the systems. PredicLib (Fig. 10) 
contains also the blocks for an extracting of the parameters from neural NARX 
model and extracting of the discrete state space model parameters from neural 
Nonlinear Innovation State Space (NISS) model of the controlled system, a block 
of the discrete Kalman estimator and a block for conversion of the discrete state 
space model to the transfer function. Some demo simulations of MPC algorithms 
for the control of the linear and the non-linear systems are included in the library. 
Some of the predictive control algorithms blocks demo applications created by 
using Matlab Web Server are accessible Virtual laboratory CyberVirtLab 
[http://cyberneticsmws.fei.tuke.sk/MatlabWebServer_welcome]. 
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Figure  10 

Screenshot of the library PredicLib from Simulink 

Conclusion 

In this paper are presented two approaches - classical and intelligent for the design 
of GPC algorithm for a non-linear system. The disadvantage of the classical 
approach of GPC strategy using as linearization technique for an estimate 
parameters of the dynamic model is that analytic description of non-linear system 
must be given. If analytical model of the dynamic system is unknown the better 
solution is to use an intelligent approach – GPC based on the neural NARX or 
NISS model for MIMO non-linear systems. In this paper is neural NARX model 
trained as an one-step predictor for a non-linear SISO system. After training this 
NARX model was used for on-line estimation of the system parameters which 
allow to calculate a linear predictor. This linear predictor of the system was used 
for solving of an optimization problem of GPC algorithm. 

The practical simulations by the language Matlab/Simulink, Neural Toolbox and 
PredicLib illustrate, that this intelligent neural GPC control strategy using 
linearization technique by the gain matrix produces more excellent performance 
for control of the non-linear system as GPC strategy using of the classical 
approach. 

Applying the principle of an instantaneous linearization to the GPC design gives 
tremendous advantages over the conventional nonlinear predictive control design. 
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