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Abstract: Motion control has been a fruitful ground for applying Variable Structure 
Systems (VSS) theory. This paper provides an assessment of the state of the art of the 
relevant theoretical results for sliding mode control. The design of a sliding-mode 
controller consists of three main steps. First step is the design of the sliding surface, the 
second step is the design the control law which holds the system trajectory on the sliding 
surface, and the third and key step is the chattering-free implementation. The main 
contribution of that paper is a new method for sliding surface sector design based on tensor 
product (TP) model transformation to reduce the chattering. 
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1 Introduction 

Sliding mode has been introduced in the late 1970's [1, 2] for highly coupled 
nonlinear dynamics, with unknown system parameters and disturbances. In the 
early 1980's, sliding mode was further introduced for the control of induction 
motor drives [3]. Its utility in this hybrid discipline, consisting of power 
electronics and motion control, is to provide direct switching strategy [4] to the 
power electronics devices such that, in spite of the nonlinear dynamics of the 
induction motor, the control design is decomposed into a nonlinear control 
synthesis problem, and a linear control design problem of reduced order. These 
early applications of sliding mode indicated the versatility of the underlying 
control principles in the design of feedback control systems for motion control, 
regardless of the origin or the nature of the particular system performance 
specifications and design goals. 

This initial works were followed by a large number of research papers in robotic 
manipulator control and in motor drive control. References can be found in [5]. In 
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some of these works, experimental results were published [6, 7, 8, 9]. However, 
despite of the theoretical predictions of superb closed loop system performance of 
sliding mode, some of the experimental works indicated that sliding mode in 
practice has limitations due to the need of high sampling frequency to reduce the 
high frequency oscillation phenomenon about the sliding mode manifold -- 
collectively referred to as ‘chattering’. Among these experimental works, a few 
succeeded to show closed loop system behaviour, which were predicted by theory. 
Those who failed to manage the experimental designs successfully concluded that 
chattering is a major problem in realizing sliding mode control in practice. The 
usual sources of chattering are the limited switching frequency and the un-
modeled dynamics, which are ignored in the theoretical design steps [10]. A 
detailed simulation of the whole system including controller and discrete 
semiconductor switches can be an important middle step in the chattering free 
implementation of sliding mode. Another promising method for reducing 
chattering is the sliding sector design [20], which is in the focus of that paper. A 
tensor product model transformation is proposed for design a sliding surface. 

The tensor product (TP) model form is a dynamic model representation 
whereupon Linear Matrix Inequality (LMI) based control design techniques [11]–
[13] can immediately be executed. It describes a class of Linear Parameter 
Varying (LPV) models by the convex combination of linear time invariant (LTI) 
models, where the convex combination is defined by the weighting functions of 
each parameter separately. An important advantage of the TP model forms is that 
the convex hull of the given dynamic LPV model can be determined and analysed 
by one variable weighting functions. Furthermore, the feasibility of the LMIs can 
be considerably relaxed in this representation via modifying the convex hull of the 
LPV model. 

The TP model transformation is a recently proposed numerical method to 
transform LPV models into TP model form [14], [15]. It is capable of 
transforming different LPV model representations (such as physical model given 
by analytic equations, fuzzy, neural network, genetic algorithm based models) into 
TP model form in a uniform way. In this sense it replaces the analytical 
derivations and affine decompositions (that could be a very complex or even an 
unsolvable task), and automatically results in the TP model form. Execution of the 
TP model transformation takes a few minutes by a regular Personal Computer. 
The TP model transformation minimizes the number of the LTI components of the 
resulting TP model. Furthermore, the TP model transformation is capable of 
resulting different convex hulls of the given LPV model. 

The rest of the paper is organized as follows: Section 2 describes the main steps of 
sliding mode control design including basis of the proposed tensor product model 
transformation. Section 3 presents an application example including simulation 
results. Finally, Section 4 concludes the results. 
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2 Theoretical Background of the VSS 

The design of a sliding-mode controller consists of three main steps. First is the 
design of the sliding surface, the second step is the design the control law which 
holds the system trajectory on the sliding surface, and the third and key step is the 
chattering-free implementation. 

2.1 Design of the Sliding Manifold 

The following linear time invariant (LTI) system is considered; first the reference 
signal is supposed to be constant and zero. The system (which is assumed to be 
controllable) is transformed to a regular form [16]. 
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The switching surfaces, σ  of the sliding mode, where the control vector 
components have discontinuities, can be written in the following form [17], where 
Λ is the ‘surface matrix’. 

0=+= 12 Λxxσ   mℜ∈σ   and  )( mnmx −ℜ∈Λ  (2) 

When sliding mode occurs (when σ=0 and 12 Λxx −= ), the design problem of the 
sliding surfaces can be regarded as a linear state feedback control design for the 
following subsystem: 

2121111 xAxAx +=&  (3) 

In (3), 2x  can be considered as the input of the subsystem. A state feedback 
controller 12 Λxx −=  for this subsystem gives the switching surface of the whole 
VSS controller. In sliding mode 

112111 Λ)xA(Ax −=&  (4) 

In nineties, various linear control design methods based on state feedback are 
proposed for (3) to the design a stable switching surfaces in a form (4) (survey in 
[17]). The main problem is that this method cannot be applied for a non-
linear system which is the main challenge. The solution can be the Tensor 
Product model transformation. 
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2.2 Sliding Surface Design based on Tensor Product Model 
Transformation 

This section is intended to discuss the fundamentals of TP model transformation. 
Consider a parametrically varying dynamical system 

)())(()())(()( tztzt upBxpAx +=&  (5) 

)()()( ttt DuCxy +=  

with input )(tu , output )(ty  and state vector )(tx . The system matrix is a 
parameter-varying object, where Ωp ∈  )(z  is time varying N-dimensional 
parameter vector, and is an element of the closed hypercube 

N
NN bababa ℜ∈= ],x[]x,]x[,[ 2211 LΩ . The parameter p(z) can also include some 

elements of x(t). 

The TP model transformation starts with the given LPV model (5) and results in 
the TP model representation 
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where ]1,0[))(( ∈zwr p  are weighting coefficients. For further details about TP 
model transformation, refer to [14], [15]. According to (2), a sliding surface is 
designed for each system rr BA , which are assummed to be controllable. 

012 =+= xΛxσ rr   mr ℜ∈σ  (7) 

2.3 Control Law 

There are two main approaches of design of a control law for the sliding mode on 
the surface. In the first ‘global’ case, to ensure that the system remains in the 
sliding mode ( mℜ∈= σσ 0 ) the condition 

0<Tσσ&  (8) 

should be hold. In the second ‘local’ approach, sliding mode exists only in the 
intersection of the switching surfaces. In this case, the condition for the existence 
of a sliding mode is 

,0<iiσσ &  (9) 

where the subscription i refers to the ith element of the corresponding vector. The 
simplest control law which can lead to ‘local type’ sliding mode is the relay: 
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)( iii signMu σ⋅=  (10) 

This is easy to realize by power electronic circuits. The relay type of controller 
can directly control the semiconductor switching elements, but it does not ensure 
the existence of sliding mode for the whole state space, and relatively big values 
of Mi are necessary which might cause a severe chattering phenomenon. This 
control law is preferable if the controller's sample frequency is nearly equal to the 
maximum switching frequency of semiconductor switching elements. 

If sliding mode exists then there is continuous control, so-called ‘equivalent’ 
control, ueq, which can hold the system on the sliding manifold. In the practice, 
there is never perfect knowledge of the whole system and its parameters. Only 

eqû , the estimation of ueq, can be calculated. Since ueq does not guarantee the 
convergence to the switching manifold in general, a discontinuous term is usually 
added to eqû . 

)(ˆ , iiieqi signMuu σ⋅+=  (11) 

The control laws (11) do not control the semiconductor switching elements 
directly; additional PWM is needed. Usually, this is no problem since the 
switching frequency of the semiconductor elements can be much higher then the 
sampling frequency of the fastest digital controller. The general concept of TP 
model based control strategies is that the control signal is the weighed sum of the 
control signal of the component systems 
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2.4 Chattering Free Implementation 

The chattering is essential in the basic VSC due to the requirement that the system 
state must stick to the switching surface. Obviously this requirement is too restrict 
when only finite switching rate is available. Replacing the switching surface to the 
sliding sector may enable the system state to move continuously. From now on 
single input and two sliding surfaces are assumed, the whole state space is divided 
into three regions 
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Here the region 3R is a sliding sector introduced in [18]. The control is composed 
of two terms 
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dc uuu +=  (14) 

where uc is a feedforward compensation term based on the estimation of the 
‘equivalent’ control and the given uncertainty bounds, ud is a switching term to 
suppress the system parameter variations and disturbances. According to [18], in 
conventional (non TP) case 

eqc uu ˆ=  and 
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The sliding sector control inherits the robustness of the classical sliding mode 
control in certain cases (see details in [18]). The sliding sector concept can be 
extended to the TP model based sliding mode control as well. 
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3 Application 

The experimental system consists of a conventional DC servo gear motor with 
encoder feedback and variable inertia load coupled by a relatively rigid shaft, as 
shown in Fig 1. The controller is implemented using a DSP as the computation 
engine. 

 
Figure 1 

The experimental system 
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3.1 System Equations 

In the course of control design, the flexibility of the shaft is ignored. The state 
variables are the shaft position, θ, the shaft angular velocity, ω, and the input 
current, i, the control signal u is the motor voltage. 
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where J is the inertia of the motion control system, Kt and Kω are the torque 
constant and the back-EMF constant Ra and La are the resistance inductance of the 
armature. The effect of massd is considered as a disturbance. The model calculated 
from the nominal parameters of the system is as follows: 
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The viscous, Coulomb and Stribeck frictions are modelled by Hess and Soom [19] 
in the following way, where the second two terms are nonlinear: 
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where Fv, Fc and Fs are constants for the viscous, Coulomb and Stribeck frictions, 
vs is the characteristic velocity of the Stribeck curve. Fv was given in data sheet of 
the servo motor, Fc, Fs and vs are selected after some tests. Fig. 2 shows the 
simulated Stribeck curve. 
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Figure 2 

Stribeck curve by simulation 
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Applying the tensor product transformation, the above nonlinear system can be 
modelled by the combination of the following two linear systems. 
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The two weighing coefficients as functions of the speed are shown in Fig. 3. 
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Figure 3 

The weighing coefficients as a function of the velocity 

It is easy to explain. The nonlinear friction terms are modelled by varying viscous 
coefficient, which is represented by the a22 element in the system matrix. A1 with 
small viscous coefficient dominates at the high speed range, where the Coulomb 
friction is relatively small and the A2 with very big viscous coefficient dominates 
at the low speed range, where the Coulomb friction is relatively big. 

3.2 Sliding Surface Design 

According to (7) and (17), the surfaces have the following form: 

0=++= θλωλσ θω
rrr i      where       r=1,2 (22) 

The poles for the reduce order systems of 
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are selected as 

P=[-17 -35]. (25) 

Applying the Matlab pole placement function: 

14.166721 == θθ λλ    0.75711 =ωλ    -147.32 =ωλ  (26) 

3.3 Simulation Results 

As model verification, the real and simulated velocities (ωr, ωs) are compared in 
Fig. 4, where the input voltage of the motor is a shifted sinusoidal function with 
amplitude of 12 V (open loop responses). The value of the input voltage is divided 
by 5 to plot the velocity and input voltage in the same figure. One kind of 
nonlinearity of the system is borne from the huge friction of the harmonic gear. It 
can be seen in the Fig. 4, if the motor is in standstill, at least 2 V should be 
switched across the motor to start it. On the other hand, the motor sticks, if the 
input voltage is under 1.2 V. According to Fig. 4, the simulated model is 
acceptable from engineering point of view. The power electronic PWM unit is 
saturated at 22V. It is also a kind of nonlinearity which can be handled by TP 
model but this paper concentrates on the friction that is why only the nonlinearity 
of the friction is simulated by TP model. 
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Figure 4 

The open loop responses for sinusoidal input voltage 

Performances of two controllers are compared. In both cases, the system starts 
from the following initial state 

θ=1 rad,  ω=0 rad/sec and i=0 A (27) 

The aim of the controller is to move all state variables to 0. The sampling 
frequency of both controllers is relatively small, 100 Hz. 
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CONTROLLER C-SMC 

It is a classical sliding mode controller (C-SMC), where the sliding surface σ1 and 
(11) type control law are selected. The equivalent control is calculated from (A1 
B1) system matrixes. 

CONTROLLER TP-SMC 

It is a TP model based sector sliding mode controller(TP-SMC), where the two 
sliding surfaces are selected by (26) and (16) type control law is applied with two 
linear system components (20),(21) and the weighting coefficients of Fig. 3. Two 
equivalent controls are calculated from (A1 B1) and (A2 B2) system matrixes. 

There is a small difference between two position responses in Fig. 5 since the 
conventional (static) sliding surface cannot be identical to the sliding sector. The 
main difference appears in the control activities and in the velocity responses (see 
in Figs. 6 and 7). The conventional sliding mode is very robust but it needs 
intensive control action (see in Fig. 6), which might cause significant audio noise 
as well. The chattering of the velocity could be reduced by increasing the 
sampling frequency but this paper demonstrates that the reduction of chattering 
and the intensity of the control action (the audio noise) is significant at the same 
sampling rate, if the TP based sector sliding mode is applied instead of the 
traditional sliding mode control. 
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Figure 5 

Comparison of the position responses 
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Figure 6 
Comparison of the velocity responses 
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Figure 7 

Comparison of the control signals 

Conclusions 

In this paper, a modified variable structure control strategy with continuous 
switching control has been developed in detail for the nonlinear system with 
uncertainty. The control strategy can be regarded as the extension of conventional 
VSS based sliding mode control method through expanding the switching surface 
to the sliding sector. The sliding sector is designed by a tensor product model 
transformation. The major advantage of the proposed control scheme is the 
introduction of the continuous switching control which successfully achieves 
smooth control response and retains the robustness of VSC simultaneously. Both 
theoretical analysis and simulations demonstrate the attractiveness and the 
asymptotic stability of the sliding sector with the use of the proposed switching 
control which is essentially an interpolated control. 
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