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Abstract: There are many approaches to obtain the numerical solution of the curvature 
driven level set equation [7]. They are based on the finite differences method [7], or the 
finite element method [3] or the finite volume method [5]. The proposed numerical scheme 
uses the so called discrete duality finite volumes as in [1]. 
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1 Introduction 

The curvature driven level set equation [7] 
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is used in many different applications – the motion of interfaces, crystal growth in 
thermomechanics and computational fluid dynamics, the smoothing and 
segmentation of images and the surface reconstructions in image processing. 

The derivation of our numerical method for solving equation (1) is based on the 
finite volume methodology. We construct the so-called discrete duality finite 
volume scheme. Computational scheme follows from weak (integral) formulation 
of integrating equation (1) on the volume. 
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2 Semi-Implicit Discrete Duality Finite Volume 
Scheme 

Let have a digital image given on a structure of pixels of (in general) rectangular 
shape. And let the unknown function ),( xtu in (1) be given by discrete values in 
the centers of these rectangles. The set of all these pixels can create the original 
mesh. Let us create the dual mesh. The new unknown function ),( xtv will be 
given by discrete values in the  corners of original rectangles (see Figure 1). 

Unknown function u  will be defined on Ω×= IQT , where Ω  can be two 
dimensional bounded Lipschitz domain (in our case very often a rectangular) and 

[ ]TI ,0=  is the time interval. We will consider zero Neumann boundary 
conditions (2) and an initial condition (3) of the type: 

0=∂ uυ  on Ω∂×I , (2) 

( ) ( )xuxu 0,0 = . (3) 

A discrete time step is needed for the numerical scheme construction. We will 

consider the uniform time step 
N
T

=τ , where N  is a total number of filtering 

steps, and the time derivative in (1) will be replaced by backward difference 

τ

1−− nn uu
. Semi-implicitness consists in computing the nonlinear terms values 

from the previous time step and for linear ones we use values from the current 
time level. 

Semi-implicit in time discretization: Let τ  be a given time step, and 0u be a 
given initial level set function. Then, for Nn ,...,1= , we look for a function nu , 
solution of the equation 
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Now we will tell something about fully discrete scheme. As we mentioned above, 
a digital image is given on a structure of pixels with rectangular shape (red 
rectangles in Figure 1). This set of pixels can represent original rectangular finite 
volume mesh. We denote it by hτ . 
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Figure 1 

Original (red rectangles) and dual (black rectangles) mesh 

Since in every discrete time step of the method for (4) we have to evaluate the 
gradient of the level set function at the previous step 1−∇ nu , we put a diamond-

shaped regions to edge onto the computational domain and then take an 
approximation by finite differences on these regions. Thus we obtain a simple and 
fast construction of a system of equations. The values of the unknown functions 
u  and v  are given by values in the centers of the original and dual volumes, 
respectively. To derive the numerical scheme, we use the same notation as in [2]. 

Our original volume mesh will consists of cells hijV τ∈ , associated with DF 

nodes ijx , say 21 ,...,1,,...,1 NjNi == . Dual mesh, shifted to the north-east 

direction, consist of cells hijV τ∈  associated only with DF nodes ijx , say 

21 ,...,1,,...,1 NjNi ==  in such a way that ijx  is the right top corner for the 

volume ijV  of original mesh. 

We describe all notations only for the original volume mesh. For the dual mesh the 
notation will be the same, but with "overlines" and the unknown function will be 
denoted by v . We will consider the set of all neighbouring nodes (north, south, 
west, east) { } 1,1,0,1,,, =+−∈++ qpqpV qjpi  for each volume hijV τ∈  and 

denote it by ijN . Let ( )ijVm  represent the measure of ijV . The segment 

connecting the center of ijV  and the center of its neighbour ijqjpi NV ∈++ ,  is 
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denoted by pq
ijσ and its length by pq

ijh . As we have  regular rectangular volume 

mesh, we can use shorter notations 1h  for { }1,1,0 −∈ph p
ij , 2h  for 

{ }1,1,0 −∈qh q
ij  representing the sizes of the finite volumes in 21, xx directions, 

respectively. The sides of the finite volume ijV  are denoted by pq
ije  with measure 

( )pq
ijem . The segment pq

ijσ connecting the centers of ijV  and the center of its 

neighbour ijqjpi NV ∈++ ,  crosses the side pq
ije  of volume ijV  in the point pq

ijx . 

We will use the notation ( )ijhij xuu = , where ijx  is the center of the volume ijV  

and also ( )nijh
n
ij txuu ,,τ= , which means ( )nijh txu ,,τ  is piecewise constant 

function in space and time. 

Let us integrate (4) over every finite volume 21 ,...,1,,...,1, NjNiVij == , and 

then using a divergence theorem we get an integral formulation of (4) 
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where υ  is a unit outer normal to the boundary of ijV . Now we have to 

approximate numerically the exact "fluxes" on the right hand side and the 

"capacity function" 
1

1
−∇ nu

 on the left-hand side. For the approximation of the 

left-hand side of (5) we get 
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where ijQ  is an average modulus of gradient in ijV . 

This average will be computed using the values of the gradients on each side pq
ije  

of the finite volume, which we must approximate on the right hand of (5) as well. 
The normal derivative is naturally expressed by the finite difference of the 
neighbouring pixel values divided by the distance between pixel centers. To 
approximate modulus of gradients on pixel sides, we use following definitions for 

{ } 1,1,0,1, =+−∈ qpqp  and ( ) 0=pα if 0≥p , and ( ) 1−=pα  if 

1−=p . 



Acta Polytechnica Hungarica Vol. 8, No. 3, 2011 

 – 11 – 

( ) ( ) ( )( )( )21,,1,,
0 /,/ hvvhuupu jpijpi

n
ji

n
jpi

n
ij

p
−+++ −−=∇ αα  (7) 

( ) ( )( ) ( )( )2,1,1,
0 /,/ huuqhvvu n

ij
n

qjiqjiqji
n
ij

q −−=∇ +−−∂− α  (8) 

Specially we have: 
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The formulas (7)-(8) can be understood as an approximation of the gradient in the 
point pq

ijx . This is also an approximation of the gradient at the center of the edge 

for the dual mesh. 

Because of the fact that the gradients can achieve zero values we use the so-called 

Evans-Spruck type regularization [4], which can be for our scheme defined as 
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as a regularized absolute value of the gradient on pixel sides, and the regularized 

averaged gradient inside the finite volume, respectively, computed by the solution 
known from the previous time step 1−n . For the dual mesh we have: 
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When we combine all the mentioned considerations we conclude with the 
following approximation (the same for the dual mesh) 
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Putting together the right hand sides of (6) and (12) and considering zero 
Neumann boundary conditions, we can write the following linear system of 
equations, which has to be solved at every discrete time step Nnn ,...,1, = , 
where N  is a total number of filtering steps: 

Fully-discrete semi-implicit discrete duality finite volume scheme: Let 

21
00 ,...,1,,...,1,, NjNivu ijij == be given discrete initial values for the original 
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and dual mesh respectively. Then, for Nn ,...,1=  we look for 

21 ,...,1,...,1,, NjNivu n
ij

n
ij == , satisfying 
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However, we restrict our considerations to uniform rectangular co-volumes with 
size length h . Then, e.g., 

( ) ( ) hhhemhVm pq
ij

pq
ijij === ,,2  (15) 

Conclusion 

The main objective of this paper was to describe the new scheme used for the 
numerical solving of curvature driven level set equations. Our next objective is to 
prove the stability of this method via computational testing. 
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