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Abstract: The main aim of this article is to establish summation formulae in form of the sam-
pling expansion series building the kernel function by the samples of the modified Bessel func-
tion of the first kind Iν , and to obtain a sharp truncation error upper bound occurring in the
derived sampling series approximation. Summation formulae for functions Iν+1/Iν ,1/Iν , I2

ν

and the generalized hypergeometric function 2F3 are derived as a by–product of these results.

The main derivation tools are the Sturm–Liouville boundary value problem and various prop-
erties of Bessel and modified Bessel functions.
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1 Introduction and motivation

The historical background of sampling theorems, various applications in many branches
of science and engineering, especially in signal analysis and reconstruction and/or
its up-to-date results in different areas of mathematics like approximation theory and
interpolation are well–covered among others by Jerri’s ”IEEE 1977 paper” [13], by
survey articles of Khurgin–Yakovlev [14] and Unser [24], by the monographs of
Higgins [9], an edited monograph by Higgins and Stens [10], the book by Seip [22]
and numerous references therein. Thus, by skipping an outline of the facts from
the aforementioned references we can focus on our main goal – establishing the
I–Bessel sampling expansion result via the appropriate Strum–Liouville boundary
value problem and the related sampling expansion series truncation upper bound,
which yields the precise convergence rate in this kind of approximation procedures.

Here and in what follows B–Bessel sampling is called a sampling expansion pro-
cedure for some input function f , when the underlying sampling kernel function is
built up in terms of samples of B being a Bessel or modified Bessel function, and
the sampling nodes correspond to the zeros bk of B used in the expansion formula.
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For instance, Kramer considered J–Bessel sampling as an illustrative example for
his theorem [17] which generalized the Whittaker–Shannon–Kotel’nikov (WKS)
sampling theorem [30]. More precisely, Kramer derived the following summation
formula:

f (t) = 2Jm(t) ∑
k∈Z

jm,k f ( jm,k)

( j2
m,k− t2)Jm+1( jm,k)

, Jm( jm,k) = 0 .

Before Kramer, we have to mention Weiss [29] who arrived at the same result for
k = 2, and also Whittaker who first discussed a very similar sampling expansion
[30]; see also [31, p. 439, Eq. (17)]:

f (t) =
2
√

t
π

Jν(πt) ∑
k≥1

√
tk f (tk)

Jν+1(π tk)(t2
k − t2)

, 0 < t < ∞ ,

where {πtk} are positive zeros of Jν(πt), ν ≥ 1
2 . It is worth mentioning that a recent

article by Jankov Maširević et al. [12] is devoted mainly to Y –Bessel sampling,
where Y stands for the Bessel function of the second kind.

On the other hand, the sampling theorem is related to Sturm–Liouville boundary
value problems (see e.g. [5, 25, 27]). Motivated essentially by that connection, our
main objective is to establish a new I–Bessel sampling expansion formula which
will be presented in the next section, together with a set of corresponding expan-
sion results for Iν , I2

ν and for the generalized hypergeometric function 2F3, where
the sampling reproduction kernel consists of the Fox-Wright generalized hypergeo-
metric function pΨ∗q.

The results about truncation error upper bounds for J–Bessel sampling for the band–
limited Hankel transform can be found in [8, 31]. Recent progress was also made
by Knockaert [16] with respect to the J–Bessel truncation procedure and Jankov
Maširević et al. [12] in the case of Y –Bessel sampling. Thus, the last section is
devoted to establishing sharp truncation error upper bounds for a newly derived
truncated sampling series of modified Bessel functions Iν .

2 I–Bessel sampling expansions and Sturm–Liouville
differential equation

The main aim of this section is to establish a new Bessel–sampling expansion for-
mula for a function which possesses an integral representation in terms of the mod-
ified Bessel function of the first kind Iν . The derivation is based on the Sturm–
Liouville differential equation. After that, we apply the obtained expansion to de-
rive another Bessel sampling formulae for Iν+1/Iν , 1/Iν , I2

ν and for a generalized
hypergeometric function 2F3 as well.

Firstly, the modified Bessel function of the first kind Iν of the order ν is a particular
solution of the Bessel–type differential equation

x2y′′(x)+ xy′(x)− (x2 +ν
2)y(x) = 0, x ∈ (0,∞) ,
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which can be presented in the Sturm–Liouville form:

−(xy′(x))′+
ν2

x
y(x) =−xy(x), x ∈ (0,∞) .

This in turn implies [4] that
√

xIν(x
√

λ ) satisfies the Sturm–Liouville differential
equation

y′′(x)− (ν2−1/4)x−2y(x) = λy(x), x ∈ (0,∞) .

We notice that this is in fact a singular Sturm–Liouville problem.

In order to state our next auxiliary result, which we require to perform our results in
this section, we mention some preliminary facts. In [26, p. 581], Zayed stated that if
φ(x) = φ(x,λ ) and θ(x) = θ(x,λ ) are the solutions of the singular Sturm–Liouville
boundary value problem such that

φ(0) = sinα, φ
′(0) =−cosα ,

θ(0) = cosα, θ
′(0) = sinα ,

then it is known [23] that there exists a complex valued function m such that for
every nonreal λ the appropriate Sturm–Liouville differential equation has a solution

ψ(x,λ ) = θ(x,λ )+m(λ )φ(x,λ ) ∈ L2(0,∞) . (1)

Throughout this section m will denote a meromorphic function that is real–valued
on the real axis and whose singularities are simple poles on R. The poles of m will
be denoted by {λk}k∈N0 .

Theorem A. [26, p. 582, Theorem 3.1] Consider the singular Sturm–Liouville prob-
lem

y′′−q(x)y =−λy, x ∈ [0,∞),

y(0)cosα =−y′(0)sinα ,

where q(x) ∈ C[0,∞). Assume that m is a meromorphic function that is real–valued
on the real axis and whose only singularities are simple poles {λk}k∈N0 on the non-
negative real axis, and λ0 will be reserved for the eigenvalue zero.

Let p be the smallest integer for which the series ∑k≥1(λk)
−p−1 converges.

(a) If none of λk is zero, set

G(λ ) =


∏
k≥0

(
1− λ

λk

)
exp

p

∑
j=1

1
j

(
λ

λk

) j
, p ∈ N

∏
k≥0

(
1− λ

λk

)
, p = 0

;
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(b) If one λk is zero, say λ0 = 0, set

G(λ ) =


λ ∏

k≥1

(
1− λ

λk

)
exp

p

∑
j=1

1
j

(
λ

λk

) j
, p ∈ N

λ ∏
k≥1

(
1− λ

λk

)
, p = 0

.

Let Φ(x,λ ) = G(λ )ψ(x,λ ), g(x) ∈ L2(0,∞) and

f (λ ) =
∫

∞

0
g(x)Φ(x,λ )dx .

Then f is an entire function that admits the sampling representation

f (λ ) = ∑
k≥0

f (λk)
G(λ )

(λ −λk)G′(λk)
,

where the series converges uniformly on compact subsets of the complex λ–plane.

Now, we establish our main result in this section.

Theorem 1. If for some g ∈ L2(0,a),a > 0, the function F has an integral repre-
sentation

F(λ ) =
2ν Γ(ν +1)

λ
ν
2 aν+ 1

2

∫ a

0
g(x)
√

xIν(x
√

λ )dx , (2)

then the following sampling representation holds

F(λ ) =
2 Iν(a

√
λ )

aλ
ν
2

∑
k≥1

λ
(ν+1)/2
k F(λk)

(λ −λk)I′ν(a
√

λk)
, (3)

where λk =−a−2 j2
ν ,k, k∈N; ν >−1 and the series converges uniformly on compact

subsets of the complex λ–plane.

Moreover, let g ∈ L2(0,1) and assume that a function f possesses an integral ex-
pression, which reads as follows

f (t) =
∫ 1

0
g(x)
√

xIν(tx)dx . (4)

Then the related sampling representation is

f (t) = 2 Iν(t) ∑
k≥1

tk f (tk)
Iν+1(tk)

(
t2− t2

k

) , (5)

where ν >−1 and tk =−i jν ,k is the kth zero of Iν .
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Proof. In order to derive summation formula (3) we set φ(x,λ ), θ(x,λ ) and µ(λ )
as

φ(x,λ ) =
√

ax
(

Iν(a
√

λ )Kν(x
√

λ )− Iν(x
√

λ )Kν(a
√

λ )
)

θ(x,λ ) =
√

aλx
(

I′ν(a
√

λ )Kν(x
√

λ )− Iν(x
√

λ )K′ν(a
√

λ )
)
+

φ(x,λ )
2a

m(λ ) =−
√

λ
I′ν(a
√

λ )

Iν(a
√

λ )
− 1

2a
.

Now, from (1) we have that

ψ(x,λ ) =
√

aλx

(
I′ν(a
√

λ ) Iν(x
√

λ )Kν(a
√

λ )

Iν(a
√

λ )
− Iν(x

√
λ )K′ν(a

√
λ )

)

i.e.

Iν(a
√

λ )ψ(x,λ ) =
√

x
a

Iν(x
√

λ ) , (6)

involving the Wronskian W [·, ·] of the modified Bessel functions Iν and Kν [28, p.
80]

W (Kν , Iν)(a
√

λ ) = I′ν(a
√

λ )Kν(a
√

λ )− Iν(a
√

λ )K′ν(a
√

λ ) =
1

a
√

λ
.

From the definition of m and the well–known identity Iν(t) = i−ν Jν(it), we find that
λk =−a−2 j2

ν ,k, k ∈N, where jν ,k is the kth positive real zero of the Bessel function
Jν . Let us also mention that the zeros jν ,k, k ∈ N are positive real numbers for all
ν >−1 and there also holds [28, p. 479]

0 < jν ,1 < jν+1,1 < jν ,2 < jν+1,2 < jν ,3 < · · · .

Further, by Theorem A we conclude that

G(λ ) = ∏
k≥1

(
1+

λa2

j2
ν ,k

)
. (7)

Now, with the help of the formula [28, p. 498]

Jν(z) =

( z
2

)ν

Γ(ν +1) ∏
k≥1

(
1− z2

j2
ν ,k

)
, ℜ{ν} 6∈ Z− ,

which by virtue of substitution z 7→ iz becomes

Iν(z) =

( z
2

)ν

Γ(ν +1) ∏
k≥1

(
1+

z2

j2
ν ,k

)
,
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we can rewrite relation (7) as

G(λ ) =
2ν Γ(ν +1) Iν(a

√
λ )

(a
√

λ )ν
. (8)

Now, from (6) and (8) we have

Φ(x,λ ) = G(λ )ψ(x,λ ) =
2ν Γ(ν +1)

(a
√

λ )ν

√
x
a

Iν(x
√

λ ) .

The desired formula (3) readily follows by previous results and Theorem A.

Now, transforming integral representation (2) and the sum in (3) by taking λ = t2,
λk = t2

k and a = 1, being I′ν(t) = Iν+1(t)+ ν

t Iν(t), we deduce that if for some g ∈
L2(0,1) the function F has an integral representation

F(t) =
2ν Γ(ν +1)

tν

∫ 1

0
g(x)
√

xIν(xt)dx , (9)

then the related sampling representation is

F(t) =
2 Iν(t)

tν ∑
k≥1

tν+1
k F(tk)

(t2− t2
k )Iν+1(tk)

, (10)

where ν >−1 and tk =−i jν ,k is the kth zero of Iν(t).

Equivalently, if f (t) :=
tν F(t)

2ν Γ(ν +1)
, from formulas (9) and (10) we can immediately

deduce that if the function f has an integral representation (4), then the appropriate
sampling representation is given by (5).

Remark 1. Zayed [26, p. 592] obtained summation formulae analogous to (3) and
(5) for the Bessel function of the first kind Jν .

Also, a special case of the sampling representation formula (3), when a = 1, was
derived by Ismail and Kelker (see [11, Theorem 6.4, p. 899]), where they assumed
that F is a single–valued entire function with the asymptotic behavior F(λ ) =

O(λ−ν/2−1/2e
√

λ ), as |λ | →∞ uniformly in every sector |argλ | ≤ π−ε , 0 < ε < π .

Now, we present three summation formulae for a modified Bessel function Iν .

Corollary 1.1. For ν >−1 we have

Iν+1(t)
Iν(t)

= 2t ∑
k≥1

1
t2− t2

k
= 2t ∑

k≥1

1
t2 + j2

ν ,k
. (11)

Moreover, there holds

π coth(πt) = 2t ∑
k≥1

1
t2 + k2 +

1
t
, t 6= 0 .
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Proof. By rewriting the integral expression [6, p. 668, Eq. 6.561.7]

t−1Iν+1(t) =
∫ 1

0
xν+1 Iν(tx)dx, ν >−1 ,

into

t−1Iν+1(t) =
∫ 1

0
xν+ 1

2
√

xIν(tx)dx ,

we recognize that

g(x) = xν+1/2 ∈ L2(0,1), for all ν >−1 and f (t) = t−1Iν+1(t) .

Now, from (5) we can immediately get (11). Using the well–known identities

I 1
2
(z) =

√
2
π

sinh z√
z

, I 3
2
(z) =

√
2
π

zcosh z− sinh z
z3/2

and bearing in mind that zeros of J 1
2

are of the form j 1
2 ,k

= kπ , k ∈ N, for ν = 1/2
equation (11) becomes

cosh t
sinh t

− 1
t
= 2t ∑

k≥1

1
t2 +(kπ)2 , t 6= 0

and this expression is equivalent to the hyperbolic cotangent sum.

Remark 2. Equality (11) is already known as a Mittag–Leffler expansion [3, Eq.
7.9.3].

The formula

∑
k≥1

1
t2 + k2 =

π

2t
coth(πt)− 1

2t2 , t 6= 0

was considered by Hamburger [7, p. 130, Eq. (C)] in a slightly different form

1+2 ∑
k≥1

e−2πkt = i cotπit =
1
πt

+
2t
π

∑
k≥1

1
t2 + k2 , t 6= ik .

Also, subsequent complex analytical generalizations of Hamburger’s formula can
be found in [2].

Corollary 1.2. For ν ∈ (−1,1)\{0} it holds

1
Iν(t)

=
2ν Γ(ν)

tν−1

(
ν

t
− t

2ν−1Γ(ν) ∑
k≥1

jν−1
ν ,k

Jν+1( jν ,k)(t2 + j2
ν ,k)

)
. (12)

Proof. From the recursive relation

t Iν−1(t)− t Iν+1(t) = 2ν Iν(t)
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and equality (11) we can conclude that

Iν−1(t)
Iν(t)

=
Iν+1(t)
Iν(t)

+
2ν

t
= 2t ∑

k≥1

1
t2 + j2

ν ,k
+

2ν

t
, ν >−1 . (13)

Now, by using the integral expression [6, p. 668, Eq. 6.561.11]

t−1Iν−1(t)−
tν−2

2ν−1Γ(ν)
=
∫ 1

0
x1−ν Iν(tx)dx ,

where we recognize that g(x)= x1/2−ν ∈L2(0,1) for all ν < 1 and f (t)= t−1Iν−1(t)−
tν−2

2ν−1Γ(ν)
, from (5) we can conclude that

Iν−1(t)
Iν(t)

− tν−1

2ν−1Γ(ν) Iν(t)
= 2t ∑

k≥1

1
t2 + j2

ν ,k

(
1−

tν−1
k

2ν−1Γ(ν) Iν+1(tk)

)
.

Combining the previous expression and (13) we get

tν−1

2ν−1Γ(ν) Iν(t)
=

2ν

t
+

2t
2ν−1Γ(ν) ∑

k≥1

tν−1
k

Iν+1(tk)(t2 + j2
ν ,k)

,

which immediately gives the desired summation formula (12). Here, we also as-
sumed that ν 6= 0, because Γ(0) = (−1)! =+∞.

Remark 3. A result similar to (12) was deduced by Ismail and Kelker (see [11,
Theorem 4.10, p. 896]). They proved that

tν/2

Iν(
√

t)
=−2 ∑

k≥1

jν+1
ν ,k

(t + j2
ν ,k)J

′
ν( jν ,k)

, ν >−1.

Corollary 1.3. For ν > 0 we have

I2
ν

( t
2

)
= 2(−1)−ν tν Iν(t) ∑

k≥1

j1−ν

ν ,k I2
ν

( i
2 jν ,k

)
(t2 + j2

ν ,k)Jν+1( jν ,k)
. (14)

Proof. Using the same procedure as above, with the help of the integral represe-
ntation [6, p. 672, Eq. 6.567.12]

2−ν−1√
πt−ν

Γ
(
ν + 1

2

)
I2
ν

( t
2

)
=
∫ 1

0
xν(1− x2)ν−1/2Iν(tx)dx ,

where the kernel function g(x) = (x− x3)ν−1/2 is in L2(0,1) for all ν > 0, set-
ting f (t) = 2−ν−1√πt−ν Γ

(
ν + 1

2

)
I2
ν

( t
2

)
, by virtue of (5) and using the identities

Iν(z) = i−ν Jν(iz), Iν(−z) = (−1)ν Iν(z) we arrive at (14).
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Finally, by using Theorem 1, we derive the sampling expansion formula for a gene-
ralized hypergeometric function 2F3. Firstly, the generalized hypergeometric func-
tion pFq[z] with p numerator parameters a1, · · · ,ap and q denominator parameters
b1, · · · ,bq is defined as the series [20]

pFq[z] = pFq

[ a1, · · · ,ap
b1, · · · ,bq

∣∣∣z]= ∑
n≥0

p
∏
j=1

(a j)n

q
∏
j=1

(b j)n

zn

n!
,

where (a)n denotes the Pochhammer symbol (or the shifted factorial) [19]

(a)n ≡
Γ(a+n)

Γ(a)
= a(a+1) · · ·(a+n−1) .

When p≤ q, the generalized hypergeometric function converges for all complex va-
lues of z; thus, pFq[z] is an entire function. When p> q+1, the series converges only
for z= 0, unless it terminates (as when one of the parameters ai is a negative integer)
and in that case it is just a polynomial in z. When p = q+1, the series converges in
the unit disk |z|< 1, and also for |z|= 1 provided that ℜ

{
∑

q
j=1 b j−∑

p
j=1 a j

}
> 0.

Further, we need the Fox-Wright generalized hypergeometric function pΨ∗q[·] with
p numerator parameters a1, · · · ,ap and q denominator parameters b1, · · · ,bq, which
is defined by [15, p. 56]

pΨ
∗
q

[
(a1,ρ1), · · · ,(ap,ρp)
(b1,σ1), · · · ,(bq,σq)

∣∣∣z]= ∞

∑
n=0

p
∏
j=1

(a j)ρ jn

q
∏
j=1

(b j)σ jn

zn

n!
, (15)

where a j, bk ∈C and ρ j, σk ∈R+, j = 1, · · · , p; k = 1, · · · ,q. The defining series in
(15) converges in the whole complex z-plane when

∆ :=
q

∑
j=1

σ j−
p

∑
j=1

ρ j >−1;

when ∆ = 0, the series in (15) converges for |z|< ∇, where

∇ :=

(
p

∏
j=1

ρ
−ρ j
j

)(
q

∏
j=1

σ
σ j
j

)
.

Corollary 1.4. For all t,λ ,ν ,µ such that min
(
t,λ −1,ν +1,µ− 1

2

)
> 0 we have

2F3

[ 1
2 (ν +λ ), 1

2 (ν +λ +1)
ν +1, 1

2 (ν +λ +µ), 1
2 (ν +λ +µ +1)

∣∣∣ t2

4

]

=
2 Iν(t)

tν ∑
k≥1

jν+1
ν ,k 1Ψ∗2

[
(ν +λ ,2)

(ν +1,1),(ν +λ +µ,2)

∣∣∣ − j2
ν ,k

4

]
(t2 + j2

ν ,k)Jν+1( jν ,k)
. (16)
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Proof. Consider the integral representation formula [6, p. 673, 6.569] derived for
Jν . Its corresponding modified Bessel Iν –variant reads as follows:∫ 1

0
xλ−1 (1− x)µ−1 Iν(tx)dx =

21−2ν−λ−µ
√

π tν Γ(ν +λ )Γ(µ)

Γ(ν +1)Γ

(
ν+λ+µ

2

)
Γ

(
ν+λ+µ+1

2

)
× 2F3

[ 1
2 (ν +λ ), 1

2 (ν +λ +1)
ν +1, 1

2 (ν +λ +µ), 1
2 (ν +λ +µ +1)

∣∣∣ t2

4

]
,

and it is valid for min(t,λ ,ν +λ ,µ) > 0. Choosing g(x) = xλ− 3
2 (1− x)µ−1 ∈

L2(0,1) for µ > 1
2 and λ > 1 and then applying Theorem 1 we arrive at

tν
2F3

[ 1
2 (ν +λ ), 1

2 (ν +λ +1)
ν +1, 1

2 (ν +λ +µ), 1
2 (ν +λ +µ +1)

∣∣∣ t2

4

]

= 2Iν(t) ∑
k≥1

jν+1
ν ,k 2F3

[ ν+λ

2 , ν+λ+1
2

ν +1, ν+λ+µ

2 , ν+λ+µ+1
2

∣∣∣ − j2
ν ,k

4

]
(t2 + j2

ν ,k)Jν+1( jν ,k)
. (17)

Now, with the aid of the property of the Pocchammer symbol

(x)2n = 22n
( x

2

)
n

(
1+ x

2

)
n
,

we have that

2F3

[ ν+λ

2 , ν+λ+1
2

ν +1, ν+λ+µ

2 , ν+λ+µ+1
2

∣∣∣ − j2
ν ,k

4

]
(18)

= ∑
n≥0

(ν +λ )2n

(ν +1)n(ν +λ +µ)2n

(− j2
ν ,k)

n

4n n!

= 1Ψ
∗
2

[
(ν +λ ,2)

(ν +1,1),(ν +λ +µ,2)

∣∣∣ − j2
ν ,k

4

]
.

Summing (17) and (18) we obtain the summation formula (16).

3 Truncation error upper bounds in I–Bessel
sampling expansions

In this section our aim is to derive a uniform upper bound for the truncation error
for the Bessel–sampling expansion (5).

The truncated sampling reconstruction sum of the size N ∈N for the Bessel–sampling
formula (5) is defined as

S I
N( f ; t) = 2 Iν(t)

N

∑
k=1

tk f (tk)
Iν+1(tk)

(
t2− t2

k

) ,
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where t ∈ R, tk = −i jν ,k is the kth zero of Iν , ν > −1 and the function f has a
band–region contained in (0,1). Let us also define the truncation error of the order
N as the quantity

T I
N ( f ; t) =

∣∣ f (t)−S I
N( f ; t)

∣∣= ∣∣∣2Iν(t) ∑
k≥N+1

tk f (tk)
Iν+1(tk)

(
t2− t2

k

) ∣∣∣ .
We are looking for an upper bound for the truncation error T I

N ( f ; t) in the case when
the input function possesses a polynomially decaying upper bound like

| f (t)| ≤ A |t|−(r+1), A > 0, r > 0 , t 6= 0.

Thus, for all ν >−1 we have

T I
N ( f ; t)≤ 2A ∑

k≥N+1

|Iν(t)|
jr
ν ,k(t

2 + j2
ν ,k)

∣∣Jν+1( jν ,k)
∣∣ ,

because of the identity Iν(t) = i−ν Jν(it) and the fact that all zeros jν ,k are positive
for ν >−1.

Using an integral representation [28, p. 181, Eq. (4)]

Iν(z) =
1
π

∫
π

0
ez cos t cosνt dt− sin(νπ)

π

∫
∞

0
e−z cosh t−νt dt, ν > 0

we can conclude that

|Iν(t)| ≤ I0(t)+
1
π

∫
∞

0
e−t coshx dx = I0(t)+

1
π

K0(t), t > 0,

thus

sup
ν<t<yν ,2

|Iν(t)|= I0(yν ,2)+
1
π

K0(ν) := H1 . (19)

Using (19) and the particular value of the Rayleigh function [28, p. 502]

σ
(r)
ν = ∑

k≥1

1
j2r
ν ,k

, r ∈ N ,

for r = 1, that is σ
(1)
ν = (4(ν +1))−1 bearing in mind that |t|> 0, it holds

T I
N ( f ; t)<

2AH1

min
k≥N+1

jr
ν ,k |Jν+1( jν ,k)| ∑

k≥1

1
j2
ν ,k

(20)

=
AH1

2(ν +1) min
k≥N+1

jr
ν ,k |Jν+1( jν ,k)|

.

It remains to minimize the expression in the denominator of (20). For that purpose
we exploit Krasikov’s bound [18, p. 84, Theorem 2]:

J2
ν(x)≥

4
(
x2− (2ν +1)(2ν +5)

)
π
(
(4x−ν)

3
2 +µ

) , x >
1
2

√
µ +µ

3
2 ,
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where

µ = (2ν +1)(2ν +3), ν >− 1
2 .

In [18] Krasikov pointed out that this lower bound is poor in the transition region
around zeros jν ,k, while it fits well the Bessel function of the first kind Jν(t) in the
oscillatory region. Since we have to estimate Jν+1( jν ,k), these values are obviously
separated from zero as jν+1,k and jν ,k interlace and the latter zero belongs to the
oscillatory region of Jν+1(t). Hence

∣∣Jν+1( jν ,k)
∣∣≥ 2√

π

{
j2
ν ,k− (2ν +3)(2ν +7)

(4 jν ,k−ν−1)
3
2 +µ∗

} 1
2

, (21)

where

µ
∗ =

2ν +5
2ν +1

µ > 15.

The range of validity of (21) is

x = jν ,N+1 >
1
2

√
µ∗+(µ∗)

3
2 ≈ 4.27447 . (22)

Thus, for N large enough, applying the MacMahon asymptotics for the zeros of the
cylinder functions [28, p. 506] (see also Schläfli’s footnote [21, p. 137])

yν ,N =
(
N + ν

2 −
1
4

)
π +O(N−1), N→ ∞ , (23)

and the well–known interlacing inequalities for the positive zeros jν ,k, j′
ν ,k, yν ,k and

y′
ν ,k of Bessel functions Jν(t),J′ν(t), Yν(t) and Y ′ν(t), respectively [1, p. 370],

ν ≤ j′ν ,1 < yν ,1 < y′ν ,1 < jν ,1 < j′ν ,2 < yν ,2 < · · · ,

we have that the solution of (22) in N for the range ν > 0 becomes:

N +O(N−1)>
1

2π

√
15+15

3
2 +

1−2ν

4
≈ 1.61061− ν

2
.

Thus, (22) is not redundant for

ν ≤ 1
π

√
15+15

3
2 − 3

2
=: ν

∗ ≈ 1.22141 .

Now, bearing in mind that ν ∈ (0,ν∗], by (21) we deduce

jr
ν ,k |Jν+1( jν ,k)| ≥

2√
π

jr
ν ,k

{
j2
ν ,k− (2ν +3)(2ν +7)

(4 jν ,k−ν−1)
3
2 +µ∗

} 1
2

=: Lk(ν).

It is not hard to see that the function

x 7→ xr

{
x2− (2ν +3)(2ν +7)

(4x−ν−1)
3
2 +µ∗

} 1
2
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monotonically increases in its domain, thus

min
k≥N+1

jr
ν ,k |Jν+1( jν ,k)| ≥ LN+1(ν) ,

where we assume N ≥ 2, because of positivity of the expression in the numerator of
L2

N+1(ν). Thus, we proved the result given in the following theorem.

Theorem 2. Let ν ∈ (0,ν∗], where

ν
∗ =

1
π

√
15+15

3
2 − 3

2
.

Then for all t ∈ (ν ,yν ,2), min(A,r) > 0 and all N ≥ 3 there holds the truncation
error upper bound

T I
N ( f ; t)<

AH1

2(ν +1)LN(ν)
:=U I

N(t), (24)

where

H1 = I0(yν ,2)+
1
π

K0(ν),

LN(ν) =
2√
π

jr
ν ,N

{
j2
ν ,N− (2ν +3)(2ν +7)

(4 jν ,N−ν−1)
3
2 +µ∗

} 1
2

.

Moreover, for N large enough the asymptotics of the truncation error is

T I
N ( f ; t) = O

(
N−r− 1

4

)
.

Proof. As already proved, an upper bound (24), it remains to show the asymptotics
of the truncation error T I

N ( f ; t). Thus, for fixed t and N large enough, again by
applying (23) we have

T I
N ( f ; t) = O

(
U I

N(t)
)
= O

(
1

LN(ν)

)
= O

(
( jν ,N)−r− 1

4

)
= O

(
N−r− 1

4

)
,

which completes the proof.

In addition, we will consider an example which includes the results obtained in
Corollary 1.3 to demonstrate the Bessel–sampling approximation behavior.

Example 1. Let us denote

h(t) =
(−1)ν I2

ν

( t
2

)
2 tν Iν(t)

, S I
N(h; t) = ∑

k≥1

j1−ν

ν ,k I2
ν

( i
2 jν ,k

)
(t2 + j2

ν ,k)Jν+1( jν ,k)
.

In Fig. 1 we present the input function h and the truncated sampling I–Bessel
sampling approximation sums S I

N(h; t) for N = 15,150,3000, respectively, on the
t–domain [0, j0,1]≈ [0,2.40483] in case ν = 0.
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Figure 1
I–Bessel–sampling approximation patterns associated with Eq. (14) in Corollary 1.3. Legend: h(t) –
yellow, S I

15(h; t) – green, S I
150(h; t) – violet and S I

3000(h; t) – blue.
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