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Abstract: In the paper a three dimensional dynamic model of a small open economy, 
describing the development of net real national income, real physical capital stock and the 
expected exchange rate of the near future, which was introduced by T. Asada in [1], is 
analysed under flexible exchange rates. We study the question of the existence of business 
cycles. Sufficient conditions for the existence of a pair of purely imaginary eigenvalues with 
the third one negative in the linear approximation matrix of the model are found. For the 
existence of business cycles and their properties the structure of the bifurcation equation of 
the model is very important. Formulae for the calculation of the bifurcation coefficients in 
the bifurcation equation of the model are derived. Theorem on the existence of business 
cycles in a small neighbourhood of the equilibrium point is presented. 

Keywords: dynamical model; matrix of linear approximation; eigenvalues; bifurcation 
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1 Introduction 
Toichiro Asada formulated in [1] a Kaldorian business cycle model in a small 
open economy. He studied both the system of fixed exchange rates and that of 
flexible exchange rates with the possibility of capital mobility. In this article we 
investigate Asada’s model which was introduced in [1] under flexible exchange 
rates. In this case Asada’s model has the form 

( ) ,0, >−+++= αα YJGICY  

,IK =                                                                                                         (1) 

( ) ,0, >−= γππγπ ee  

where 
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The meanings of the symbols in (1) and (2) are as follows: Y  - net real national 
income, C  - real private consumption expenditure, I  - net real private 
investment expenditure on physical capital, G  - real government expenditure 
(fixed), T  - real income tax, K  - real physical capital stock, M  - nominal 
money stock, p  - price level, r  - nominal rate of interest of domestic country, 

fr  - nominal rate of interest of foreign country, π  - exchange rate, eπ  - 

expected exchange rate of near future, J  - balance of current account (net export) 
in real terms, Q  - balance of capital account in real terms, A  - total balance of 
payments in real terms, α  - adjustment speed in goods market, β  - degree of 
capital mobility, γβα ,,  - positive parameters, and the meanings of other 

symbols are as follows, ,
dt
dYY =  ,

dt
dKK = ,

dt
d e

e ππ = t - time. 

In the whole paper we assume as well as Asada in [1] a fixed-price economy, so 
that p  is exogenously given and normalized to the value 1. Asada assumed that 

the equilibrium on the money market ( )rYLM ,=  is always preserved, which 
enables using the Implicit-function theorem to express interest rate r  as the 
function of Y , so 
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Further we suppose that fr  is also given exogenously because of the assumption 

of a small open economy. Under these assumptions, taking into account (2) and 
the explicit expression for r , the model (1) takes the form 

( ) ( )( ) ( )( )[ ]YYYJYrKYIGCcTYcY e −+++++−= ππτα ,,,,1 00

( )( )YrKYIK ,,=                                                                       (3) 

( )[ ]., eee Y πππγπ −=  

In the whole paper we suppose that: 

(i) the model (3) has a unique equilibrium point  

( ),,, ∗∗∗∗ = eKYE π ,0>∗Y ,0>∗K ,0>
∗eπ  to an arbitrary 

triple of positive parameters ( )γβα ,, . 

(ii) ( ) YYrY JcrII −−−<+< τ110  at the equilibrium point. 

(iii) 01<−eπ
π  at the equilibrium point. 

(iv) The functions in the model (3) have the following properties: the 
function I  is linear in the variable K  and r . The function π  is 
linear in the variable eπ . The function J  is nonlinear in the 
variable π . In the variable Y  the functions ,I ,J ,r π  are 
nonlinear, and have continuous partial derivatives with respect to 
Y up to the sixth order in a small neighbourhood of the equilibrium 
point. 

In [1] Asada found sufficient conditions for local stability and instability of the 
equilibrium point. He studied how changes of the parameter β  affect the dynamic 
characteristics of the model. 
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We analyse the question of the existence of business cycles analytically. Stable 
business cycles can arise only in the case when the linear approximation matrix of 
the model (3) has at the equilibrium point a pair of purely imaginary eigenvalues 
with the third one negative. In Section 2, Theorem 1 gives sufficient conditions for 
the existence of a pair of purely imaginary eigenvalues with the third one negative. 
The bifurcation equation of the model (3) is very important for the existence of 
business cycles. In Section 3, Theorem 2 gives the formulae for the calculation of 
the bifurcation coefficients in the bifurcation equation. Theorem 3 speaks about 
the existence of business cycles in a small neighbourhood of the equilibrium point. 

Such an analytical approach was applied to study similar models in [6], [7], [8], 
[9], [10]. 

2 The Analysis of the Model (3) 

Consider an isolated equilibrium poin ( ),,,
∗∗∗∗ = eKYE π  ,0>∗Y  ,0>∗K  

,0>
∗eπ  of the model (3). 

After the transformation 

,,, 111
∗

−=−=−= ∗∗ eeeKKKYYY πππ  

the equilibrium point ( )∗∗∗∗ = eKYE π,,  goes into the origin ( ),0,0,01 =
∗E  and 

the model (3) becomes 

( )( ) ( )( )[ +++++++−= ∗∗∗∗
011111 ,,1 cTYYrKKYYIYYcY τα    

     ( )( ) ( )]∗∗∗∗ +−++++++ YYYYYYJGC ee
11110 ,, πππ  

( )( )∗∗∗ +++= YYrKKYYIK 1111 ,,                                                          (4) 

( ) ( )[ ]., 1111
∗∗

+−++= ∗ eeeee YY πππππγπ  

Performing the Taylor expansion of the functions on the right-hand side of this 
system at the equilibrium point ( )0,0,01 =∗E  the model (4) obtains the form 

( )[ +++++−= 111111 1 YJYrIKIYIYcY YYrKYτα  

     ] 1111
~YYJYJ e

Y e +−++ πππ
πππ  

11111
~KYrIKIYIK YrKY +++=                                                            (5) 
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 and the functions eKY 111
~,~,~ π  

are nonlinear parts of the Taylor expansion. 

The linear approximation matrix ( )γβα ,,AA =  of the system (5) has the 
following form  
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The characteristic equation of ( )γβα ,,A  is given by 

,032
2

1
3 =+++ bbb λλλ                                                                                (7) 

where 

−=1b trace ( ) =γβα ,,A  

     ( )[ ] ( ){ }111 −++−++++−−= eKYYYrY IJJrIIc
ππ πγπτα  

=2b sum of all principal second – order minors of ( ) =γβα ,,A  

     ( )[ ] ( )+−+−++−= 111 eKYYK IJJcI
ππ πγπτα         

     
( )[ ]( ){ }YYYrY JJrIIc e ππταγ ππ

−−−+++−+ 111  

−=3b det ( ) =γβα ,,A   

       ( ) ( )[ ]{ }.111 YYK JJcI e πτπαγ ππ
−−+−−−=  

As we are interested in the existence and stability of limit cycles we need to find 
such values of parameters γβα ,,  at which the equation (7) has a pair of purely 
imaginary eigenvalues and the third one is negative. We will call such values of 
parameters γβα ,,  the critical values of the model (3). We denote these critical 

values by .,, 000 γβα  The mentioned types of eigenvalues are ensured by the 
Liu’s conditions [5]. 
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.0,0,0 32131 =−>> bbbbb                                                                          (8) 

For an arbitrary α  exists γ  such that the first inequality is satisfied under the 
condition (iii). The second inequality is satisfied under the condition 

( ) ( )[ ] .111 YY JJce πτπ ππ
>−+−−  This condition is satisfied when β  is 

sufficiently small. 

The equation 0321 =−bbb  gives 

( )[ ] ( ){ }.111 −++−++++− eKYYYrY IJJrIIc
ππ πγπτα  

( ){ ( )[ ]+−++−+− 111. YYKK JJcII e πταπγ ππ  
( )( )( )[ ]}−−−−+++−+ YYYrY JJrIIc e ππταγ ππ

111  

( ) ( )[ ]{ } .0111 =−−+−−− YYK JJcI e πτπαγ ππ  

Asada indicated in [1] that 0321 >− bbb  for 0<Yπ  and for .0=Yπ  The 

equation 0321 =− bbb is satisfied under the condition .0>Yπ  This inequality 

is satisfied if .
Y

Y

r
J−

<β  

The equation 0321 =− bbb  can be expressed in the form
                                  ( ) ( ) ( ) ,0,,, 32

2
1 =++ βαγβαγβα fff

 
where 

( ) ( )[ ]YYK rRJIJf αβαπβα π −−−= 22
1 ,  

( ) ( )( )−−−+= YYY rJTRJJrTJf ππβαπβαβα πππ
222

2 ,  

                ( ) ( )−−+−−− RJJITJIJRJ YKKY
222222 22 παπαβπα πππ  

                2222 ππβ ππ JIJI KK −−  

( ) ( ) ( )[ ]+−+−+= YYKK JRUJPTJITUIf πβαβαβα π
222

3 ,  

                ( )( ) ++−−+ UIJPJRJI KYYK
22222 αβπα π  

                ( ) ( )YKYK JPJIUJPJI −++−+ 2222 παπαβ ππ  

where 
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( ) ,011 <−+−= YJcP τ  

,0<++= YrY rIIPR  

,0<−= YrJRT ππ  

.0<−= YrJPU ππ  

We see that for an arbitrary γ  exists α̂  such that ( ) ,00,ˆ1 =αf  .0ˆ >α  
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γ
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=  and consider an equation ( ) 0,, =Φ ϑβα  when 
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We see that ( ) 0,, =Φ ϑβα  is equivalent to ( ) .0,, =γβαF  Analyze 

( ) .0,, =Φ ϑβα  

It holds: 

1. ( ) 00,0,ˆ ===Φ ϑβα  

2. 
( ) ( ) .00,0,ˆ 22 ≠−−=

∂
==Φ∂ RJJ Yπ

α
ϑβα

π  

By the implicit function theorem there exists a function ( )ϑβα ,f=  in a small 

neighbourhood of ( )0,0 == ϑβ  such that ( )0,0ˆ f=α  and 

( )( ) .0,,, =Φ ϑβϑβf  

We see that for a sufficiently large 0γ  of parameter γ  and sufficiently small 0β  

of parameter β  there exists value 0α  of parameter α  such that the triple 

is ( )000 ,, γβα  the critical triple of the model (3). The following theorem gives 
sufficient conditions for the existence of a critical triple of the model (3). 
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Theorem 1. Let the condition 01<−eπ
π  is satisfied. If parameter 

Y
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is sufficiently small and parameter γ  is sufficiently large, then there exists a 

critical triple ( )000 ,, γβα of model (5). 

3 Existence of Limit Cycles and their Stability 
According to the assumption (iv) the model (5) can be itemized in the form 
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Consider a critical triple ( )000 ,, γβα  of the model (3). Let us investigate the 

behavior of 11, KY  and e
1π  around the equilibrium ( )0,0,01 =∗E  with respect to 

the parameter ( ) ,0,,, 00 >+−∈ εεαεααα  and the fixed parameters 

,0ββ =  .0γγ =  

After the shifting 0α  into the origin by relation ,01 ααα −=  the model (9) 
becomes 
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Denote the eigenvalues of (6) as 

( ) ( ) ( ) ( ),,,,,,,,,, 21 γβαωγβαξλγβαωγβαξλ ii −=+=
( )γβαλλ ,,33 =  

and let 

( ) ( ).,,,,,,, 00033000000201 γβαλλγβαωωωλωλ ==−== ii  

Express the model (10) in the form 

( ) ( ),,~,, 1000 αγβα xYxAx +=  
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Consider a matrix ( ),ijm=M  ,3,2,1, =ji  which transfers the matrix 
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,22 YK =  ,12 FF =  and 3F  is real function (the symbol ""−  means complex 

conjugate expression). 

Theorem 2. There exists a polynomial transformation 

( )133132 ,, αKYhYY +=  

( )133232 ,, αKYhKK +=                                                         (12) 

( )133332 ,, αππ KYhee += , 

where ( ) ,3,2,1,,, 133 =jKYh j α  are nonlinear polynomials with constant 

coefficients of the kind 
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which transforms the model 

( )12221202 ,,, απω eKYFYiY +=  
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into its partial normal form on a center manifold 
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and VU ~,~
 are continuous functions. 

The resonant coefficients 1δ  and 2δ  in the model (13) are determined by the 
formulae  
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2
32

0,1,1
1

2
31 hhmmhmhmB  

    ( ) ( )0,0,2
33332

0,1,1
33331 hmmhmm ++  

( ) ( )( ) ( )2
03231

22
01211 eJmmJImmC YY π

αα ++=  

( )2
1211 YImmD =  

( )2
01211 YmmE πγ=  

( ) ( )( ) ( )2
0

2
31

22
0

2
11 eJmJImF YY π

αα ++=  

( )22
11 YImG =  

( ),2
0

2
11 YmH πγ=  

while all partial derivatives are calculated at the values 
.0,0 1111 ==== απ eKY  
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Proof.   The unknown terms ( ) 3,2,1,321 ,, =jh mmm
j  and the resonant terms 21,δδ  

can be found by the standard procedure which is described for the example in [2]. 
As the whole process of finding them is rather elaborate, we do not present it here. 

In polar coordinates ϕϕ ii reKreY −== 33 ,  the model (13) can be written as 

( ) ( ) ( )13131
2 ,,,,,, απϕαπϕα ee rRrRbarrr ∗+++=  

( ) ( )[ ]1313
2

10 ,,,,,,1 απϕαπϕαωϕ ee rr
r

drc ∗Φ+Φ+++=                 (14) 

( ) ( ),,,,,,, 13133303 απϕαπϕπλπ eeee rWrW ∗++=  

where .Re,Re 12 δδ == ba  The equation  

01
2 =+ αbar                                                                             (15) 

is the bifurcation equation of the model (14). It determines the behaviour of 
solutions in a neigbourhood of the equilibrium point of the model (5). Utilizing the 
results from the bifurcation theory [3], [11] we can formulate the following 
theorem. 

Theorem 3. Let the coefficients ba,   in the bifurcation equation (15) exist. 

1) If 0<a  then there exists a stable limit cycle for every small enough 
,01 >α  if b  is positive and for every small enough ,01 <α  if b  is 

negative. 

2) If 0>a  then there exists an unstable limit cycle for every small enough 
,01 <α  if b  is positive and for every small enough ,01 >α  if b  is 

negative. 

Conclusions 

The main contributions of this paper are the results in Theorem 1and in Theorem 
2. Theorem 1 gives sufficient conditions for the existence of a critical triple of the 
model (3). Theorem 2 gives the formulae for the calculation of the first two 
resonant coefficients of the model. These theorems are important for the 
investigation of the existence of  limit cycles which are interpreted as business 
cycles in economics. We intend to show an application of both the model of 
flexible exchange rates and the model of fixed exchange rates on selected 
countries. 
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