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Abstract: Copulas enabling to characterize the joint distributions of random vectors by 
means of the corresponding one-dimensional marginal distributions are presented and 
discussed. Some properties of copulas and several construction methods, especially when a 
partial knowledge is available, are included. Possible applications are indicated. 
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1 Introduction 

Random vectors are fully characterized by the distribution function. Indeed, if H =  
(X1, …, Xn) is an n-dimensional random vector, then all its probabilistic 
characteristics can be computed by means of the distribution function FH: n → 
[0, 1], FH(x1, …, xn) = P(X1 ≤ x1 & … & Xn ≤ xn). Note that FH is non-decreasing in 
any component and it fulfils limit boundary conditions 

( ) 0111 =+−
−∞→

niiH
t

x,,x,t,x,,xFlim , i = 1, …, n, (1) 

and 

( ) ( ){ }1 1sup , , | , , 1n
H n nF x x x x ∈ = . (2) 

Moreover, FH is n-increasing (compare (4)). However, FH can be a rather 
complicated function and its relationship with the marginal distribution functions 

nXX F,,F
1

:  → [0, 1], 

( ) ( ) ( ){ }11 1 1 1 1 1sup , , , , , , | , , , , ,
i

n
X H i i n i i nF t F x x t x x x x x x −

− + − += ∈
is not transparent, in general. 
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To clarify the above mentioned relationships, after studies of Hoeffding and 
Fréchet, the notion of a copula was introduced by Sklar [37]. For two-dimensional 
case, a copula C: [0, 1]2

 → [0, 1] is an aggregation function with neutral element 1, 
which is 2-increasing, i.e., 

C(x, y) + C(x', y') - C(x, y') - C(x', y) ≥ 0  (3) 

for all  x ≤ x', y ≤ y'. 

Similarly, copulas with higher dimension n can be introduced, replacing 
2-increasingness (3) by n-increasingness: 
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for all 0 ( ) ( ) ( ) ( ) 11 111
1

1
1 ≤≤≤≤≤ −−

nn xx,,xx . Note that 1 is a weak neutral element 
of C, C(x1, …, xn) = xi whenever xj = 1 for all j ≠ i and 0 is an annihilator of C, 
C(x1, …, xn) = 0 whenever 0 ∈ { x1, …, xn}. As an example recall the copula 
Π: [0, 1]n → [0, 1], Π (x1, …, xn) = x1 … xn which is an n-copula for each n ≥ 2. 
When speaking about copulas without specification of their dimension, we will 
always have in mind 2-copulas, i.e., 2-dimensional case. 

According to Sklar's theorem, for any random vector H = (X, Y) there is a copula 
C such that 

( ) ( ) ( )( )vF,uFCv,uF YXH =    for all u, v ∈  

where FH, FX, FY are the distribution functions of H, X, Y, respectively. Moreover, 
C is determined uniquely on Ran FX  x Ran FY (more precisely, on 

YX FF Ranx   Ran ), and the restriction ( )YX FF|C RanxRan  is called a subcopula. 

Vice-versa, for any closed subsets A, B of [0, 1] containing 0 and 1, a mapping D: 
A x B → [0, 1] which is 2-increasing, with neutral element 1 and which is also 
non-decreasing, is always a subcopula of some copula C. Evidently, if H = (X, Y) 
is a discrete random vector, the corresponding subcopula, which is then unique, is 
defined on a discrete set. 

Example 1. Let V, W, Z be independent random variables uniformly distributed 
over [0, 1], and let X = max (V, Z), Y = max (W, Z). For the random vector  H = 
(X, Y), its joint distribution function FH:  2 → [0, 1] is given by FH (x, y) = xy 
min (x, y), and the marginal distribution function FX, FY on [0, 1] are given by 
FX(x) = FY(x) = x2. The copula C: [0, 1]2 → [0, 1] linking X and Y is given by 
C(x, y) = ( )y,xminxy  and it is so called Cuadras – Augé copula with parameter 
0.5 (geometric mean of product and min). 
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Similarly, if H = (X1, …, Xn) there is an n-dimensional copula C: [0, 1]n → [0, 1] 
so that FH(x1, …, xn) = ( ) ( )( )nXX xF,,xFC

n11
. For more details about copulas we 

recommend Nelsen's book [30] and the monograph [35]. 

The aim of this paper is to bring a short description of basic properties of copulas, 
of some classes of copulas, and especially of some new construction methods for 
copulas. Though mostly we will deal with 2-copulas, also some examples and 
results for n-copulas will be included. Finally, we recall some quantitative 
characteristics of copulas and their applications. 

2 Binary Copulas 

For any 2-copula C it holds W ≤ C ≤ M, where W(x, y) = max (x + y - 1, 0) and 
M(x, y) = min (x, y), and both W and M are 2-copulas. Moreover, the class of all 2-
copulas is convex. Copulas are 1-Lipschitz and thus continuous aggregation 
functions. If they are, moreover, associative (as binary functions), they are t-norms 
[16], and thus they have representation as M-ordinal sums of Archimedean 
copulas. Due to Moynihan [29], an Archimedean copula C: [0, 1]2 → [0, 1], i.e., 
an associative copula satisfying C(x, x) < x for each x ∈ ]0,1[, is representable in 
the form 

( ) ( ) ( ) ( )( )( )ytxt,tminty,xC += − 01 , (5) 

where [ ] [ ]∞→ ,,:t 010  is a strictly decreasing convex continuous function with 
t(1)=0 (note that the opposite is also true). As an example, take t: [0,1] → [0, ∞] 

given by t(x) = 
x

x−1 . Then, for (x, y) ≠ (0, 0), 

( )
yxyx

yxy,xC
−+

= . (6) 

Note that this copula is called Ali-Mikhail-Haq copula. Observe that the product 
copula Π is generated by tΠ, tΠ (x) = -log x, while W is generated by tW, tW (x) = 
1 − x. 

Coming back to the situation that a copula C models the dependence structure of a 
continuous random vector (X, Y), note that C = Π if and only if X and Y are 
independent. Moreover, C = M means the total positive dependence of X and Y, 
i.e., Y = f(X) for some function f strictly increasing on Ran X. Similarly, C = W 
means the total negative dependence of X and Y, i.e., Y = f(X) for some function f 
strictly decreasing on Ran X. 
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Suppose that random variables X and Y are coupled by a copula C. Then for any 
increasing R  → R transformations f1, f2 and any decreasing R  → R 
transformations g1, g2, random variables f1(X) and f2(Y) are also coupled by C, but 
random variables f1(X) and g2(Y) are coupled by a copula C −: [0, 1]2 → [0, 1] 
given by 

C − (x, y) = x − C(x, 1 - y), (7) 

and similarly, random variables g1(X) and f2(Y) are coupled be a copula C_: [0, 1]2 
→ [0, 1] given by 

C − (x, y) = y − C(1 - x,  y), (8) 

Random variables g1(X) and g2(Y) are coupled by the survival copula Ĉ : [0, 1]2 
→ [0, 1] given by 

Ĉ (x, y) = x + y - 1 + C(1 - x, 1 - y). (9) 

Observe that 

( ) ( ) ( ) CĈCC ===
∧

−−
−−  

and 

( ) ( ) ĈCC == −
−−

− . 

Several interesting results concerning these related copulas can be found in [17]. 
Note that constructions (7), (8), (9) allow to extend or modify several results for 
copulas. As a typical example recall W-ordinal sums introduced in [27]. This new 
type of ordinal sums for copulas can be derived from the standard ordinal sums of 
copulas (we will call them M-ordinal sums) by means of either (7) or (8). Indeed, 
for a disjoint system ( ) Ab,a ∈ααα []  of open subintervals of [0,1], 

( )A|C,b,aWC ∈α= ααα  is given by 

( ) ( ) ( ) ( ) [ ] [ ]
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else,

 11   if1

y,xW

-a,-bb,ax, y
ab

by,
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axCaby,xC αα  

            (10) 

if and only if 

( ),A|C,b,aMC ∈α= −
ααα

−  

i.e., 
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( ) ( ) ( ) [ ]
( )⎪⎩

⎪
⎨

⎧
∈⎟⎟

⎠

⎞
⎜⎜
⎝
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else.

   if 2

y,xM

b,ax, y
ab
ay,

ab
axCabay,xC  (11) 

Another type of ordinal sums based on a gluing method from [36] are so called 
horizontal (or vertical) g-ordinal sums. Following [27], 

( ),A|C,b,aghC ∈α−= ααα  is given by 

( ) ( ) ] [
( )⎪⎩

⎪
⎨

⎧

Π

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−
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α
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else,

   if

y,x

b,axy,
ab
axCabay,xC  

where ] [{ } Ab,a ∈ααα  is disjoint system of open subintervals of [0, 1] and ( ) AC ∈αα  
is a system of 2-copulas. 

Note that all types of ordinal sums are not only construction methods, but also 
representation tools. 

An interesting construction method for 2-copulas was introduced in [3]. Let C1, C2 
be two 2-copulas. Then their product C = C1 ∗ C2 given by 

( ) ( ) ( )dt
t

y,tC.
t

t,xCy,xC
∂

∂
∂

∂
= ∫ 2

1

0

1  (12) 

is also a 2-copula. Note that the product ∗ is an associative operation on the set of 
all 2-copulas with neutral element M and annihilator Π. 

An important generalization of the product ∗ in (12) was recently proposed in [5] 
and is based on a family ( ) [ ]10,ttD ∈=Δ  of copulas, 

( ) ( ) ( ) dt
t

y,tC,
t

t,xCDy,xCC t∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂

∂
=∗Δ

1

0

21
21 . (13) 

Evidently, if Dt = Π for each t ∈ [0,1], (12) and (13) coincide. As examples, 
observe that C ∗Δ W = C−, see (7), and W ∗Δ C = C_, see (8). 

We also recall a new method for constructing copulas introduced by Mayor, 
Mesiar and Torrens in [22]. 

Proposition 1. Let ϕ: [0,1] → [0,1] be a convex function, such that for each x ∈ 
[0, 1], ϕ(x) ≥ 2x - 1, ϕ(0) = 0. Then the function C(ϕ): [0, 1]2 → [0, 1] given, for 
(x, y) ≠ (0, 0), by 
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( )( ) ( ) ( ) ( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕϕ= −

ϕ y,xmax
y,xminy,xmaxy,xC 1 , (14) 

is a copula. Here ϕ(-1): [0, 1] → [0, 1] is the pseudo-inverse of ϕ given by 
( )( ) [ ] ( ){ }xt|,tsupx ≤ϕ∈=ϕ − 101 . 

Note that C(ϕ) is symmetric and C(ϕ)(x, x) = ϕ(x), i.e., ϕ is the diagonal section of 
C(ϕ). 

Let for c ∈ [0, 1], ϕc: [0, 1] → [0, 1] be given by ϕc(x) = max(c x, 2 x - 1). Then 
Proposition 1 can be applied, and we can introduce a parametric class of copulas 

( )( )
]10[ ,cc

C
∈ϕ , 

( )( )
( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+
−

≥+−+

≤
≤

=ϕ

else.
2

2
2 if1

  ) - (2 if
  ) - (2 if

yxc
c

yxyx

ycxcx
xcycy

y,xC
c

 (15) 

For any given 2-copula C, we have introduced in [27] a method yielding a 
parametric system of copulas ( )( )

[10] ,
C

∈αα . Based on the idea of conditional 

distribution functions, for ] [ ( ) [ ] [ ]101010 2 ,,:C,, →∈α α  is given by 

( )( ) [ ] ( ){ }( ) .y,x,tC|,tsupCy,xC
α

αα≤α∈
=α

10  

Take, for example Ali-Mikhail-Haq copula C given by (6). Then 
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⎠
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⎠
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⎜
⎜
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⎨
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11
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i.e., Ali-Mikhail-Haq copula C is invariant under conditioning ( )αC . On the other 
hand, starting from the copula ( )c

C ϕ , given in (15), we have ( )( )( ) ( )( )( )βϕαϕ ≠
cc

CC , 

whenever α, β ∈ [c, 1[ and α ≠ β, but ( )( )( ) ( )( )( )ccc
CC ϕαϕ ≠  for each α ∈ ]0, c]. 

Moreover, ( )( )( )cc
C ϕ  is given by 
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( )( )( )( )
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3 n - copulas 

Both W and M are associative 2-copulas and thus they can be univocally extended 
to n-ary functions. For each n-copula C: [0, 1]n → [0, 1] it still holds W ≤ C ≤ M 
(using the same notation for binary and n-ary forms of W and M). While  M is 
copula for each n ≥ 2, W is copula if and only if  n = 2. Indeed, for C = W, putting 
( ) ( ) 50  and  1 11 .xx ii == − , i = 1, … , n, the inequality (4) reduces to 0

2
1 ≥−

n . 

Similarly, each associative 2-copula has a genuine extension to an n-ary function. 
In the case of Archimedean copulas represented by (5), their n-ary form can be 
written as follows 

( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

−
n

i
iin xt,tmintx,,xC

1

1
1 0 . (16) 

However, formula (16) describes an n-ary copula (for each n ≥ 2) only if the 
pseudo-inverse t(-1): [0, ∞] → [0, 1] given by 
( )( ) ( )( )( )x,tmintxt 011 −− =  

is absolutely monotone, i.e., it possesses all derivatives on ]0, ∞[ which alternate 
the sign (evidently, the first derivative is negative). For more details see [11]. In 
general, among associative 2-copulas one can extend to n-copulas (for each n ≥ 2) 
only M-ordinal sums of Archimedean copulas generated by inverses of absolutely 
monotone bijections ϕ: [0, ∞] → [0, 1]. These resulting operations were 
considered recently in the logical environment by Radojevič [32]. For fixed n > 2, 
formula (16) yields an n-ary copula if and only if the function f: [-∞, 0] → [0, ∞] 
given by f(x) = t(-1)(-x) has non-negative differences of orders 1, 2, …, n. Note that 
this means that f  is (n – 2)-times differentiable (and all these derivatives are non-
negative), and f (n-2) is a convex function. For more details see [25]. We recall two 
other construction methods for n-copulas. 

Method 1. For any ni-copulas Ci: [ ] [ ]1010 ,, in → , i =1, …, k, the function C: 

[ ] [ ]1010 1 ,, knn →++  given by 
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( ) ( ) ( )
( )

kkn

k

nnxnk

nnnnnnnn

x,,xC

..x,,xC.x,,xCx,,x,x,,xC

+++++

+++++

−

=

11

2111111

1

121111

                                                 
 

is an n-copula, where ∑
=

=
k

i
inn

1
 (note that if ni = 1 then Ci(x) = x for all x ∈ [0, 1] 

by convention). 

Method 2. Let ϕ1, …, ϕn: [0, 1] → [0, 1] be Lebesgue measure λ preserving 
functions, i.e., for each Borel subset  E ⊂ [0, 1], ( )( ) ( )EE1 λ=ϕλ −

i , i = 1, …, n. 
Then the function given by 

( ) [ ]( ) [ ]( )( )nnn x,x,x,,xC 00 1
1

1
11

−− ϕ∩∩ϕλ=  (17) 

is an n-copula. 

Note that each n-copula can be represented in the form (17), for more details see 
[20]. 

Observe that if ϕ1 = … = ϕn then C = M is the strongest n-copula. If, for example, 
ϕ1 = ϕ2 = 1 − ϕ3 = id[0,1], then (17) results in a 3-copula C: [0, 1]3 → [0, 1] given 
by 

( ) [ ] [ ] [ ]( ) ( )( ) ( )( )z,x, yMW,zy,xminmaxzyxz,y,xC =−+=∩∩λ= 011 ,-1 0, 0, . 

4 Discrete Copulas 

An interesting class of subcopulas are discrete copulas introduced in [19], 
compare also empirical copulas discussed in [30], D: [ ]1 0,2 →nI  (or in 

m−dimensional case, D: [ ]1 0,→m
nI ), where 

⎭
⎬
⎫

⎩
⎨
⎧= 1210 ,,

n
,

n
,In , and irreducible 

discrete copulas K: nn II →2   (K: n
m
n II → ) introduced in [22] (in an equivalent 

form on the scales Ln = {0, 1, …, n}), see also [24]. 

Discrete copulas D: [ ]1 0,2 →nI  are in a one-to-one correspondence with 
bistochastic n x n matrices [19]. Several properties and constructions for discrete 
copulas can be thus introduced by means of properties, notions and constructions 
of bistochastic matrices. For example, the product of copulas C1 ∗ C2 mentioned in 
the previous section, see (12), has its discrete counterpart D1 ∗ D2 described by the 
product of the corresponding bistochastic matrices. The class Dn of all discrete 

[ ]1 0,2 →nI  copulas is a polyhedron with vertices corresponding to the permutation 
matrices of order n. However, then the corresponding irreducible discrete copulas 
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are just discrete copulas with range In, as introduced in [22]. Each such copula 
related to a permutation σ describes the ordered statistics of x and y samples which 
are coupled together, i.e., if xi is the j'th order statistics in the x sample, then yi is 
the σ(j)'th order statistics in the y sample. For more details we recommend [26]. 
Similarly, m-dimensional case for m > 2 can be treated. Indeed, D: n

m
n II →  is a 

discrete copula if and only if there are permutations σ1, σ2, …, σm of (1, 2, …, n) 
such that the sample 

( ) ( )mnnm x,,x,,x,,x 1111 , 

with distinct values on each fixed coordinate, can be written in the form 

( ) ( )( ) ( ) ( )( )nnnn mm
x,,x,,x,,x σσσσ ′′′′

11 1111 , 

where jix′  is the jth order statistics in the sample from ith coordinate. 

5 Copulas Based on a Partial Knowledge 

Partial knowledge about the relationship of random variables X and Y restricts the 
choice of a copula C coupling X and Y. In several cases, such knowledge 
determines the values of C on a subset of domain [0, 1]2 only, and we want to 
extend this information to the whole domain of C. Rarely such extension is 
unique, and thus we mostly look for some extremal (or simple) extensions. A 
typical case is when knowing the diagonal section δ: [0, 1] → [0, 1] of a copula C, 
δ(x) = C(x, x), i.e., for [0, 1] uniformly distributed random variables X and Y, 
knowing the distribution function of Z = max(X, Y). There always exists a copula 
whose diagonal section coincides with given δ, so-called diagonal copula [8], [30], 
given by 

( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ δ+δ

=δ 2
yx,y,xminy,xC . 

Moreover, there is always a weakest copula [ ] [ ]1 0,1 0, 2 →δ :B with 
( ) ( ) [ ]1 0,∈δ=δ x,xx,xB . The copula Bδ is given by 

( ) ( )
[ ]

( )( )ttminy,xminy,xB
yx,yxt

δ−−=
∨∧∈

δ , 

and called the Bertino copula, see [2], compare also [9], [13]. 

In general, the strongest copula with given diagonal section δ need not exist. 
Observe that Cδ is always a maximal element of the class of copulas with diagonal 
section δ, and it is the strongest symmetric copula of that class. 
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The problem when a function MTδ: [0, 1]2 → [0, 1], 

( ) ( )( )|yx|yx,maxy,xMT −−∨δ=δ 0  

is a copula was solved in [5]. The function MTδ is a copula (so-called Mayor-
Torrens copula) if and only if the function δ − id is non-decreasing on δ-1(]0, 1]). 
Note that then MTδ = Bδ and 

( ) ( ) ( ) ( )( )yy,xxminy,xminy,xMT δ−δ−−=δ . 

Similar results were studied in the case of given opposite diagonal section ω: 
[0, 1] → [0, 1], ω(x) = C(x, 1−x), see [12], [13]. The function 

( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ ω+ω

−+=ω 2
10 yx,yx,maxy,xC  

is always a copula with opposite diagonal section ω. There is always a strongest 
copula with given ω, see [12], [13]. Observe that the above results were 
straightforwardly shown in [12], [13], however, they can be derived from results 
for diagonal sections exploiting the constructions (7) or (8), see [14]. 

Recent results concerning the extensions from affine sections of copulas can be 
found in [14]. Moreover, in [15] we have discussed extensions of horizontal 
sections of copulas, h: [0, 1] → [0, 1], h(x) = C(x, b) for a fixed b∈ ]0, 1[. For 
example, the function Ch: [0, 1]2 → [0, 1] given by 

( )
( )

( )( ) ( )⎪
⎩

⎪
⎨

⎧

−
−+−

≤
=

else
1

1

 if

b
byxyxh

by
b

yxh

y,xCh , 

is always a copula with prescribed horizontal section h. Note that related results 
for irreducible discrete copulas were discussed in [21]. 

6 Some Quantitative Characteristics of Binary 
Copulas 

Among several quantitative characteristics of 2-copulas we introduce two of them. 

Kendall's tau τX,Y characterizes a random vector (X,Y) in the next sense: if (x1, y1), 
…, (xn, yn) is a statistical sample describing (X,Y), then the estimation of τX,Y is 
given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=τ

2
n

dcˆ Y,X , 



Acta Polytechnica Hungarica Vol. 6, No. 1, 2009 

 – 15 – 

where c is the number of concordant pairs (xi, yi) and (xj, yj) (i.e., such that 
(xi−xj)(yi−yj) >0) and d is the number of discordant pairs (i.e.,  (xi−xj)(yi−yj) < 0). 
The population Kendall's tau can be computed by means of  the copula C linking 
X and Y, 

[ ]
( ) ( ) 14

210

−=τ ∫ ∫ y,xCdy,xC
,

Y,X . 

Another quantitative characteristic of dependence of random variables X and Y is 
Spearman's rho. For a sample (x1, y1), …, (xn, yn), Y,Xρ̂  is the rank correlation 
coefficient. Population ρX,Y  can be computed by formula 

[ ]
( ) 312

210

−=ρ ∫ ∫ dydxy,xC
,

Y,X . 

Note that both, τX,Y, ρX,Y ∈ [-1, 1] and τX,Y = ρX,Y = 1 if and only if C = M, i.e., if 
Y = f(X) for some function f strictly increasing on Ran X. Similarly, τX,Y = ρX,Y = -1 
means that C = W and Y = f(X) for some function f strictly decreasing on Ran X. 
Thus, both τX,Y and ρX,Y are indicators of monotone functional dependence of X 
and Y. Recall that Pearson's rho (the standard correlation coefficient) describes the 
degree of linear dependence of X and Y, while Spearman's rho describes the rank 
correlation coefficient. This fact allows to apply copulas to check the monotone 
functional dependence of random variables X and Y. 

7 Some Applications 

Risk management in financial or hydrological environment is based on the 
conditional behavior of extremal events, expressed by the quantity (if it exists) 

( )α−α−
→α

≥≥=
+ 11

0
,Y,XY,X QY|QXPlimUT  (18) 

where QX,α is the α-quantile of random variable X. UTX,Y is called the upper tail 
dependence. Similarly, the lower tail dependence LTX,Y  can be defined, when in 
(18) α approaches to 1−. 

If the dependence of X and Y is captured by a copula C, then 

( ) ( )+− δ′=δ′−= 0            and        12 CY,XCY,X LTUT , 

where δC: [0, 1] → [0, 1] is the diagonal section of C. 
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Example 2. An interesting class of copulas is determined by triangulation method, 
see [4]. For (x, y) ∈ ]0, 1[2, let α ∈ [W(x, y), M(x, y)]. Then the copula Cx, y, α: 
[0, 1]2 → [0, 1] which is linear on four triangles determined by the point (x, y) and 
vertices of the unite square [0, 1]2, is given by 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

Δ∈
−

−α−

Δ∈
−

−α−

Δ∈
α

Δ∈
α

=α

. if
1

1

, if
1

1

, if

 , if

1110,

1101,

0100,

1000,

y,x,,,

y,x,,,

y,x,,,

y,x,,,

,y,x

v,u
y
vx

v,u
x
uy

v,u
y
v

v,u
x
u

v,uC  

Then 

( )
( )

( )
( )
( ) ⎥⎦

⎤
⎢
⎣

⎡
−
−

−
−−

∈
−

−−α+
=

α y,xmin
y,xmax,

y,xmin
,yxmax

y,xmin
yxUT

,y,xC 1
1

1
01

1
1  

and 

( )
( )

( )
( )
( )⎥⎦

⎤
⎢
⎣

⎡ −+
∈

α
=

α y,xmax
y,xmin,

y,xmax
,yxmax

y,xmax
LT

,y,xC
01 . 

Moreover, 

[ ]|yx||,yx|yx
,y,xC −−−++−∈−−α+=ρ
α

211212241 . 

For modeling real data (financial, hydrological, sociological, etc.) by means of 
copulas, there are applied several methods. For a fixed set of copulas (mostly 
some parametric family of Archimedean copulas) and the observed sample (x1, y1), 
…, (xn, yn), we can first compute the empirical parameters τ̂  and/or ρ̂  and fit the 
best copula by means of its Kendall's tau and/or Spearman's rho. Another 
approach is based on the least square method. There are alternative approaches 
based on specific characteristics of copulas and their empirical estimations. 
Among rare methods dealing with asymmetric copulas, i.e., with the case of 
nonexchangeable random vectors, there are least square method-based approaches 
related to asymmetric Archimedean copulas or to Archimax copulas. Note that we 
are just working on a software for fitting such copulas to real data. 

Another field of applications of copulas is in the nonadditive integral area 
supporting the multicriteria decision aid. For a set X = {1, …, k} of criteria, the 
capacity m: 2X → [0, 1] assigns to group of criteria E a weight m(E) (thus E1 ⊂ E2 
implies m(E1) ≤ m(E2), m(∅) = 0, m(X) = 1). For a given score vector x ∈ [0, 1]X 
and a 2-copula C: [0, 1]2 → [0, 1], the corresponding C-based integral IC, m(x) can 
be understood as the utility of x and it is given by 
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( ) ( ) ( )( ) ( ) ( )( )( ), , , 1
1

x , , ,
k

C m i ii i
i

I C x m E C x m Eσ σσ σ +
=

= −∑  

where σ is a permutation of (1, …, k) such that xσ(1) ≤ … ≤ xσ(k), and Eσ, i = {σ(i), 
…, σ(k)},  with convention Eσ, k+1 = ∅. For more details see [18]. 

Conclusion 

We have discussed binary and n-ary copulas, including some construction 
methods and applications. Copulas bring a new light into stochastic dependence 
modeling and they offer a powerful tool for better fitting of models of several real 
world problems, especially in connection with extremal events. The state-of-art 
overview of applications of copulas in problems occurring in nature, e.g., 
hydrological problems, can be found in a recent monograph [34] while several 
financial applications of copulas are discussed, e.g., in [7], [10]. 
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