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Abstract: A notion of a generated chain variation of a set function m with values in [−1,1] is pro-
posed. The space BgV of set functions of bounded g-chain variation is introduced and properties
of set functions from BgV are discussed. A general Choquet integral of bounded A-measurable
function is defined with respect to a set function m∈BgV . A constructive method for obtaining this
asymmetric integral is considered. A general fuzzy integral of bounded g-variation, comonotone
⊕-additivite and positive�-homogenous is represented by a general Choquet integral. The repre-
sentation of a general Choquet integral in terms of a pseudo Lebesque-Stiltjes integral is obtained.
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1 Introduction
The Choquet integral is often used in economics, pattern recognition and decision anal-
ysis as nonlinear aggregation tool [4, 5, 6, 20, 21, 23, 24]. Most of the studies of non-
additive set functions and integrals have been focused to the case when their values are
in non-negative interval (fuzzy measures), e.g., [0,1]. A fuzzy measure m : A → [0,1]
(or [0,∞]), m(∅) = 0 is a non-decreasing set function, defined on σ-algebra A . Integrals
can be viewed as an extension of underlining measures, see [9, 10].

Choquet integral (introduced in [3]) of A-measurable non-negative function f with
respect to a fuzzy measure m : A → [0,∞] is defined by

Cm( f ) =
∫

∞

0
m{x| f (x)≥ t}dt.

The main properties of the Choquet integral are monotonicity and comonotone additiv-
ity, see [4, 18]. For a finite fuzzy measure m and A-measurable f : X → R, f + = f ∨0,



f− = (− f )∨0 we have

Cm( f ) = Cm( f +)−Cm( f−),

where m is the conjugate set function of a fuzzy measure m, given by m(E) = m(X)−
m(Ec), for E ∈ A , where Ec = X \E. The last integral is known under the name asym-
metric Choquet integral. In [16] it has been shown that this integral is well defined on
the class of bounded A-measurable functions with respect to all real-valued set func-
tions, m : A → R of bounded chain variation, such that m(∅) = 0, even if they are
non-monotonic. The asymmetric Choquet integral is linear with respect to m, hence (see
[16, 18])

Cm( f ) = Cm1( f )−Cm2( f ).

Fuzzy integrals corresponding to an appropriate couple (⊕,�) of pseudo-operations have
been studied in [12, 13, 17, 18, 19, 25]. Symmetric pseudo-operations are introduced
in [6, 7]. A construction of general fuzzy integral has been studied in [2, 10, 25]. As
a special type of such integral, the Choquet-like integral, introduced in [12], is defined
with respect to pseudo-operations with a generator. It can be viewed as a transforma-
tion of the Choquet integral. The Choquet-like integral related to some non-decreasing
function g : [0,1]→ [0,∞], g(0) = 0, defined for a non-negative A-measurable function
f and a fuzzy measure m, is given by

Cg
m( f ) = g−1 (Cg◦m(g◦ f )) (1)

This integral is also defined for a real-valued function f , if for g is taken its odd extension
to the whole real line [12, 13], and we shall call it a general Choquet integral.

The aim of this paper is to present a general Choquet integral defined with respect to
set functions of bounded g- chain variation. As we shall see, this integral is of bounded
g-variation asymmetric, comonotone ⊕-additive and positively �-homogenous.

The paper is organized as follows. Section 2 is devoted to preliminary notions and
definitions of symmetric pseudo-operations. In Section 3 we introduce a g-chain vari-
ation of set functions and we consider the space of set functions of bounded g-chain
variation BgV . In Section 4 we introduce the notion of a signed ⊕S -measure. A pseudo-
difference representation of a signed ⊕S -measure is obtained. In Section 5 we introduce
a general fuzzy integral defined with respect to m ∈ BgV . We consider its relation with
the asymmetric general Choquet integral, i.e., Choquet-like integral (defined by (1),
w.r.t. m ∈ BgV ) and present its representation in the term of a pseudo Lebesque-Stiltjes
integral. As a consequence, in the case of an underlining signed⊕S -measure this integral
reduces to a pseudo Lebesque integral.

2 Symmetric pseudo-operations
We recall definitions of a t-conorm and pseudo-operations according to [6, 7, 9, 10].

Definition 1 A triangular conorm (t-conorm) is a comutative, associative, non-decrea-
sing function S : [0,1]2→ [0,1], with neutral element 0.



Definition 2 An additive generator s : [0,1]→ [0,∞] of a t-conorm S (if it exists) is left
continuous at 1, increasing function, such that s(0) = 0, and for all (x,y) ∈ [0,1]2 we
have

S(x,y) = s(−1)(s(x)+ s(y)),
s(x)+ s(y) ∈ Ran(s)∪ [s(1),∞],

where s(−1) is a pseudo-inverse function of s (see[9]).

Definition 3 Let S : [0,1]2→ [0,1] be a continuous triangular conorm. Pseudo-addition
⊕S : [−1,1]2→ [−1,1] , is defined by

x⊕S y =



S(x,y), (x,y) ∈ [0,1]2

-S(|x|, |y|), (x,y) ∈ [−1,0]2

a, (x,y) ∈ [0,1]×]−1,0],x > |y|
b, (x,y) ∈ [0,1[× [−1,0],x 6 |y|
1or -1, (x,y) ∈ {(1,−1),(−1,1)}
y⊕S x, else,

where a = inf{z | S(−y,z) > x} and b =− inf{z | S(x,z)≥−y}.

The binary operation ⊕S is commutative, monotone, with neutral element 0. If it is
associative, e.g., if S is a strict t-conorm, ⊕S can be extended to n-ary operation. Then
for all n-tiple (x1,x2, . . . ,xn) ∈ [−1,1]n we define:

n⊕
i=1

S xi =

(
n−1⊕
i=1

S xi

)
⊕S xn. (2)

Definition 4 Let S be a continuous t-conorm. The pseudo-difference associated to t-
conorm S is given by:

x	S y = x⊕S (−y) (3)

for all (x,y) ∈ [−1,1]2 \{(1,1),(−1,−1)}. By the convention 1	S 1 = a, a ∈ {±1,0}.

Example 1 For all (x,y) ∈ [−1,1]2 \ {(1,1),(−1,−1)} and for maximum ∨, Yager t-
conorm SY

p and Hamacher t-conorm (Einstein sum) SH
2 (see [10]), we have, respectively:

(i) x	∨ y = sign(x− y)(|x|∨ |y|);

(ii) For p = 2k−1,

x	SY
p

y =

 −1, xp− yp <−1,
p
√

xp− yp, −1≤ xp− yp ≤ 1,
1, xp− yp > 1;

(iii) x	SH
2

y = x−y
1−xy .



Let S be a strict t-conorm with an additive generator s : [0,1]→ [0,∞]. Let g : [−1,1]→
[−∞,∞] be defined by:

g(x) =
{

s(x), x≥ 0
−s(−x), x < 0 . (4)

The function g is the symmetric extension of s, so it is a strictly increasing function.
A pseudo-addition ⊕S can be transformed to a binary operation U on [0,1], i.e., to a

generated uninorm. The results contained in the following proposition have been shown
in [6, 7, 9].

Proposition 1 Let S be a strict t-conorm with an additive generator s, pseudo-addition
⊕S and function g defined by (4), then:

(i) for all x,y ∈ [0,1]

x	S y = g−1(g(x)−g(y));

(ii) for all x,y ∈ [−1,1]

x⊕S y = g−1(g(x)+g(y)); (5)

(iii) for all z, t ∈ [0,1]

U(z, t) = u−1(u(z)+u(t)),

where u : [0,1]→ [−∞,∞], is given by u(x) = g(2x− 1), with the convention ∞−∞ ∈
{∞,−∞}.

It is clear that (i) holds for all (x,y) ∈ [−1,1]2 \{(1,1),(−1,−1)}. It is shown in [7]
that (]−1,1[,⊕S) is an Abelian group.

It is a well known fact that a pseudo-multiplication � : [−1,1]2→ [−1,1], which is
distributive with respect to ⊕S , can be defined using the additive generator of pseudo-
addition ⊕S , i.e., for g : [−1,1]→ [−∞,∞], � is defined by:

x� y = g−1(g(x)g(y)), (6)

for all (x,y) ∈ ]−1,1[2. The pseudo-multiplication defined in this manner is commuta-
tive, associative with neutral element e� ∈ ]0,1[ and distributive with respect to pseudo-
addition ⊕S .

Example 2 Let⊕SP
be the pseudo-addition induced by the probabilistic sum SP : [0,1]n→

[0,1], defined by

SP(x1,x2, . . . ,xn) = 1−
n

∏
i=1

(1− xi).

The additive generator g of ⊕SP
is defined by:

g(x) =
{
− ln(1− x), x≥ 0

ln(1+ x), x < 0 .



Let � be given by: x� y = g−1(g(x)g(y)), for all x,y ∈ ]−1,1[ , i.e.,

x� y = sign(x · y)
(

1− e− ln(1−|x|) ln(1−|y|)
)

.

For all x ∈]−1,1[\{0} we have:

x� e� = x i x� x−1 = e�,

where the neutral element is given by e� = 1− 1
e , and an inverse element, for x ∈

]− 1,1[\{0} is given by x−1 = sign(x)
(

1− e
1

ln(1−|x|)

)
. Hence, (]− 1,1[\{0},�) is an

Abelian group.

The following result was shown in [15].

Proposition 2 Let S be a strict t-conorm, pseudo-addition ⊕S with the generating func-
tion g given by (4), and pseudo-multiplication � is defined by (6). Then we have:

(i) (]−1,1[,⊕S ,�) is a field isomorphic to (R,+, · )

(ii) The pseudo-multiplication has the next form

x� y = sign(x · y)U�(|x|, |y|),

where the uninorm U� : [0,1]2→ [0,1] is defined by U�(x,y) = s−1(s(x)s(y)) for
all x,y ∈ [0,1], with the convention:

(a) in the case ∞ ·0 = 0, U� is conjunctive,

(b) in the case ∞ ·0 = ∞, U� is a disjunctive uninorm.

It is clear now, that the couple of symmetric pseudo-operations (⊕S ,�) can be expressed
in terms of a couple of uninorms, or as it is usual by (5) and (6).

3 Space BgV
According to [16, 18], the chain variation of a real valued set function m : A → R,
m(∅) = 0, for all E ∈ A , is defined by

|m|(E)= sup

{
n

∑
i=1
|m(Ei)−m(Ei−1)| |∅ = E0 ⊂ . . .⊂ En = E, Ei ∈ A , i = 1, . . . ,n

}
,

where supremum is taken with respect to all finite chains from ∅ to E. The chain
variation |m| of a real-valued set function m is positive, monotone, set function, |m|(∅)=
0 and |m(E)| ≤ |m|(E) for all E ∈ A . We say that a real-valued set function m, m(∅) =
0, is of bounded chain variation if |m|(X) < ∞, and we denote by BV the set of all
set functions with the bounded chain variation, vanishing at the empty set. We refer
[1, 16, 18] for an exhaustive overview of properties and results related to BV . It is
proven in [1, 18] that a real-valued set function m belongs to BV if it can be represented
as difference of two monotone set functions ν1 and ν2.



Definition 5 [15] For a given function g : [−1,1]→ [−∞,∞], defined by (4), g-chain
variation |m|g of a set function m : A →]−1,1[, m(∅) = 0, is defined by

|m|g(E) = g−1

(
sup

{
n

∑
i=1
|g(m(Ei))−g(m(Ei−1))|

|∅ = E0 ⊂ . . .⊂ En = E,Ei ∈ A , i = 1, . . . ,n
})

,

for all E ∈ A and supremum is taken with respect to all finite chains.

Using the fact that g is an odd function, we easily obtain the following result.

Proposition 3 Let m : A →]−1,1[ be a set function, m(∅) = 0, then g-chain variation
has the following properties:

(i) 0 6 |m|g(E)≤ 1, E ∈ A .

(ii) |m|g(∅) = 0.

(iii) |m(E)|6 |m|g(E), E ∈ A .

(iv) |m|g is a monotone set function, i.e.,

|m|g(E) 6 |m|g(F),

for all E ⊂ F, E,F ∈ A .

iv) If m : A → [0,1] is a monotone set function, then

|m|g(E) = m(E) for all E ∈ A .

We say that a set function m : A →]− 1,1[, m(∅) = 0, is of bounded g-chain variation
if |m|g(X) < 1, and we denote by BgV the family of such set functions.

Proposition 4 Let m1,m2 ∈ BgV . Then

|m1⊕S m2|g(X)≤ |m1|g(X)⊕S |m2|g(X).

Proof: We will use the next notation

L = { /0 = E0 ⊂ E1 ⊂ . . .⊂ En = F, Ei ∈ A , i = 1, . . . ,n}.

We denote by CF all finite chains from ∅ to F . We have

|m1⊕S m2|g(X) = g−1
(

sup
L∈CX

{ n

∑
i=1
|g((m1⊕S m2)(Ei))−g((m1⊕S m2)(Ei−1))|

})
= g−1

(
sup

L∈CX

{ n

∑
i=1
|g◦m1(Ei)+g◦m2(Ei)



− g◦m1(Ei−1)−g◦m2(Ei−1)|
})

6 g−1
(

sup
L∈CX

{ n

∑
i=1
|g◦m1(Ei)−g◦m1(Ei−1)|

+
n

∑
i=1
|g◦m2(Ei)−g◦m2(Ei−1)|

})
6 g−1

(
g(g−1( sup

L∈CX

{
n

∑
i=1
|g◦m1(Ei)−g◦m1(Ei−1)|}))

+ g(g−1( sup
L∈CX

{
n

∑
i=1
|g◦m2(Ei)−g◦m2(Ei−1)|}))

)
= |m1|g(X)⊕S |m2|g(X).

2

Proposition 5 [15] A set function m : A →]− 1,1[, m(∅) = 0, belongs to BgV if and
only if it can be represented as follows

m = m1	S m2,

where m1,m2 : A → [0,1] are two fuzzy measures.

Proof: We have that m ∈ BgV if and only if g ◦m ∈ BV . By Theorem 3.10. from
[18], there exist two fuzzy measures m̃1 and m̃2 such that g ◦m = m̃1 − m̃2. Taking
m1 = g−1 ◦ m̃1 and m2 = g−1 ◦ m̃2 we obtain the claim. 2

4 Signed ⊕S-measures
In this section we consider a set function m : A→ [−1,1]. We will define σ-⊕S -additivity
of a set function m in the following manner. Let S be a strict t-conorm and ⊕S a pseudo-
addition with an additive generator g : [−1,1]→ [−∞,∞]. First, we define the notion of

a convergent ⊕S -series
∞⊕

i=1
S ai. We have the following situations:

(i) An expression
∞⊕

i=1
S ai is unambiguously defined if ai > 0 for all i = 1,2 . . .. Then

{
n⊕

i=1
S ai}n∈N is a monotone increasing sequence of reals from the interval [0,1], hence

∞⊕
i=1

S ai := lim
n→∞

n⊕
i=1

S ai, (7)

i.e., the sum of ⊕S -series is equal to a number from the interval [0,1[ and we say that
⊕S -series is convergent, otherwise it diverges to 1.
(ii) In the case when ai 6 0, for all i = 1,2, . . . . we have the similar situation as in (i),
i.e., the sum of ⊕S -series is a number from the interval ]−1,0], otherwise it diverges to



−1.
(iii) For ai ∈ [−1,1], i = 1,2, . . ., analogously as in the previous situations, we take (7),

i.e., the classical limit value of the sequence of reals {
n⊕

i=1
S ai}n∈N, if it exists, i.e., if it is

a number from the interval ]−1,1[.
We introduce the notion of σ-⊕S -additivity as follows. A distorted signed measure

µ transformed by g−1, i.e., any real valued signed fuzzy measure m = g−1 ◦ µ is σ-⊕S -
additive, if g is an additive generator of pseudo-addition ⊕S and µ : A → [−∞,∞] is an
arbitrary signed measure.

Definition 6 A set function m : A → [−1,1] is a signed ⊕S -measure if there exists a
signed measure µ : A → [−∞,∞] (µ assumes at most one of the values from {+∞,∞})
such that:

m

(
∞⋃

i=1

Ei

)
= g−1

(
∞

∑
i=1

µ(Ei)

)
is fulfilled for any sequence {Ei}i∈N, Ei ∈ A , satisfying Ek∩E j = /0 for k 6= j, where the
series on the right side is either convergent or divergent to +∞ or −∞.

Obviously, we have m(∅) = 0 and m takes on at most one of the values from {−1,1}.

Proposition 6 Let m : A → [−1,1] be a signed ⊕S -measure. Then there exist unique
fuzzy measures m1 and m2 such that

m = m1	S m2.

Proof. According to the classical Jordan’s theorem of representation of a signed mea-
sure (see [8]), we have µ = µ+− µ−, where µ+ and µ− are measures. By Definition 6,
for all E ∈ A we have

m(E) = g−1(µ(E))
= g−1(µ+(E)−µ−(E))
= g−1(g(g−1 ◦µ+(E))−g(g−1 ◦µ−(E)))
= m1(E)	S m2(E).

2

Example 3 Let µ : A→ [−∞,∞] be a signed measure and let m be a set function defined
on σ-algebra A , m : A → [−1,1] as follows:

m(E) = sign(µ(E))
(

1− e−|µ(E)|
)

.

The set function m is a signed ⊕SP
-measure.

Remark 1 Let m : A→ [−1,1] be a set function such that m ∈ BgV. Then there exist m1
and m2 such that m = m1	S m2. If the fuzzy measures m1 and m2 are S-measures, then
m is a signed ⊕S - measure.



5 A general Choquet integral
Let (X ,A) be a measurable space, and F + and F classes of A−measurable functions
given by

F + = { f | f : X → [0,1], sup
x∈X

f (x) < 1},

F = { f | f : X → [−1,1], sup
x∈X
| f (x)|< 1},

Let the operation	 be given by Definition 4. For a set function m : A→]−1,1[, m(∅) =
0, we define a pseudo conjugate set function m	 : A →]−1,1[ by:

m	(E) = m(X)	m(Ec),

for all E ∈ A , where Ec = X \E.

Proposition 7 [15] We have

(i) f = f +	 f−, for any f ∈F , where f +, f− ∈F +, f + = f ∨0 and f− = (− f )∨0.

(ii) m is monotone if and only if m	 is monotone.

(iii) Let m1,m2 : A →]−1,1[ such that m1(X) = m2(X). Then

m1 6 m2 if and only if m	1 > m	2 .

In the sequel, ⊕ and � will denote associative pseudo-operations, defined by (5) and
(6), respectively, and	 the corresponding pseudo-difference. The measurable functions
f and h on X are called comonotone [4] if they are measurable with respect to the same
chain C in A . Equivalently, comonotonicity of functions f and h can be expressed as
follows: f (x) < f (x1) ⇒ h(x) 6 h(x1) for all x , x1 ∈ X .

Definition 7 Let I : F →]−1,1[ be a functional. We say that

(i) I is monotone if for all f , h ∈ F

f 6 h⇒ I( f ) 6 I(h),

(ii) I is comonotone ⊕-additive if

I( f ⊕h) = I( f )⊕ I(h)

for all comonotone f and h from F ,

(iii) I is positively �-homogenous if

I(a� f ) = a� I( f )

for all a ∈ [0,1[, f ∈ F ,



(iv) I is of bounded g-variation if G(I) < 1 , where a g-variation G(I) of I is defined
by

G(I) = g−1

(
sup

{
n

∑
i=1
|g(I(hi))−g(I(hi−1))| | 0 = h0 6 . . . 6 hn = e1X , hi ∈ F

})
.

Remark 2 Obviously, if I : F →]−1,1[ is a monotone functional, then g-variation of I
is given by G(I) = I(e1X ).

Let m∈BgV and let s∈F be a simple function with Ran(s) = {s1,s2, . . . ,sn}. We define

Im(s) = s1�m(E1)⊕
n⊕

i=2

(si	 si−1)�m(Ei), (8)

where −1 < s1 6 s2 6 . . . 6 sn < 1 and Ei = {x ∈ X | s(x) > si}.

Proposition 8 [15] Let Im be defined by (8). For all simple functions from F , and for
all m ∈ BgV we have:

(i) Im satisfies the properties (ii) and (iii) given in Definition 7.

(ii) Im(s) = Im(s+)	 Im̄	(s−).

(iii) Im(s) = Im1(s)	 Im2(s), where m1 and m2 are given by Proposition 5.

(iv) Im(a ·1E) =

 a�m(E) a ∈ [0,1[

a� m̄	(E) a ∈ ]−1,0[
.

We consider now a general fuzzy integral. First we define a general fuzzy integral with
respect to a monotone, non-negative function m ∈ BgV and then with respect to an arbi-
trary m from BgV .

Definition 8 A general fuzzy integral Im : F →]−1,1[ is defined by:

(i) For a fuzzy measure m from BgV

Im( f ) = sup
s∈F +,s6 f +

Im(s) ⊕ inf
−s′∈F +,−s′6 f−

Im(s′). (9)

(ii) For m ∈ BgV

Im( f ) = Im1( f )	 Im2( f ), (10)

where m1 and m2 are given by Proposition 5.

A general fuzzy integral Im : F →]−1,1[ with respect to a fuzzy measure is monotone.
Im is asymmetric, i.e.,

Im(− f ) =−Im̄	( f ),

for all f ∈ F .



Proposition 9 Let Im : F →]−1,1[ be a general fuzzy integral with respect to m∈ BgV .
We have:

(i) Im is of bounded g-variation.

(ii) Im satisfies the properties (ii) and (iii) given in Definition 7.

(iii) Im( f ) = Im( f +)	 Im̄	( f−), for all f ∈ F .

Proof. (i) Let m ∈ BgV , by Proposition 5, m = m1	m2, where m1 and m2 are fuzzy
measures from BgV . Im1 ,Im2 : F →]−1,1[ are monotone functionals. By definition of
g-variation we have G(−I) = G(I) and

G(Im) = G(Im1	Im2) 6 G(Im1)⊕G(Im2) = Im1(e1X )⊕Im2(e1X ) = m1(X)⊕m2(X) < 1.

We obtain (ii) and (iii) by (8), (9), (10) and Proposition 8. 2

Based on the above consideration and results proven in [2, 4, 15, 16, 18] we have the
next propositions.

Proposition 10 Let Im : F →]− 1,1[ be a general fuzzy integral with respect to m ∈
BgV . Then

Im( f ) = Cg
m( f ) = g−1 (Cg◦m(g◦ f )) ,

where Cg
m is a general Choquet integral.

Proposition 11 Let Im : F →]−1,1[ be a general fuzzy integral w.r.t. m ∈ BgV . Then

Im( f ) = g−1

LS
∫

[−∞,∞]

g(t)d(g◦F)(t)

 ,

where the integral on the right-hand side is a pseudo Lebesgue-Stieltjes integral.

Proof. Let F : [−1,1]→ [−1,1] be a function of bounded totally g-variation, i.e.,

g−1

(
sup

{
n

∑
i=1
|g(F(ti))−g(F(ti−1))| | −1 6 t1 6 . . . 6 tn 6 1, i = 1, . . . ,n

})
< 1.

(11)
Then there exist two non-decreasing functions F+ and F− such that F = F+	F− and
a signed ⊕- measure on a σ-algebra of Borel subsets of [−1,1], induced by F .

Let Im be a general fuzzy integral with respect to m ∈ BgV . For f ∈ F , let F be
defined by

F(t) =−m{x ∈ X | f (x) > t}, t ∈ [−1,1] .

F is of bounded totally g-variation (11). f ∈ F is bounded, therefore g◦ f is bounded,
Im( f ) = Cg

m( f ), and according to [16] (Appendix) we have the claim. 2

Corollary 1 Let Im : F →]− 1,1[ be a general fuzzy integral with respect to a signed
⊕-measure m, m ∈ BgV . Then

Im( f ) = g−1
(∫

g◦ f dµ
)

,

where integral on the right-hand side is g-integral, see [17, 18].
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