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Abstract: A plane problem of failure mechanics is considered for concentrically integrated 

cylinders. It is assumed that the drawing die (internal cylinder) is negative allowance 

strengthened by means of external cylinder (holder), and near the surface of the drawing 

die there are N arbitrarily located rectilinear cracks of length 2lk (k=1,2,...,N). Theoretical 

analysis on definition the negative allowance providing minimization of failure parameters 

(stress intensity factors) of drawing die was carried out on minimax criterion. A simplified 

method for minimization the failure parameters of a hard alloy drawing die was separately 

considered. 
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1 Introduction 

Experience shows [1] the great reliability and durability of multicomponent 

constructions compared to homogeneous ones. At present, sandwich constructions 

are widely used in industry and engineering. While designing high pressure 

apparatus, a circuit of negative allowance connected multicomponent ring under 

internal pressure is often used. A similar circuit is implemented in draw-making 

while drawing the wires and rods of annular cross section. The drawing is a 

process when a wire, a rod or a pipe is given a draft through the hole of a special 

instrument (drawing die) that has some less section than the initial work piece. 
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The drawing dies are manufactured from hard alloys, industrial diamonds (to 

make thin rods) or tool steel (to draw rods and large section pipes). The hard 

alloys and diamond are embedded so that it could freely go in a draw hole and go 

out from the opposite side. The end is caught by a tractive mechanism [2] of a 

drawbench that gives the rod a draft through a drawing block and subjects it to 

deformation, i.e. to reduction and drawing. 

The experience of the drawing industry shows that [2] the failure of hard alloy 

drawing dies with reinforcing rings (holder) occurs because of crack propagation 

arising on the boundary of the working and calibrating zones of the drawing die. 

In this connection, at the stage design of new constructions of drawing dies, it is 

necessary to perform limit analysis of the drawing die in order to determine that 

the would-be initial cracks arranged unfavorably will not grow to disastrous sizes 

and cause failure in the course of rated life. The size of the initial minimal crack 

should be considered as a design characteristic of the material. 

At the current stage of development of engineering, the optimal design of the 

machine parts provided in order to increase their serviceability is of great 

importance. Therefore, the optimal design of composite (multicomponent) 

constructions increases in importance. An increase in the drawing die‟s 

serviceability may be substantially controlled by using design-technological 

methods, in particular by geometry negative allowance of the connection of a 

drawing die and a holder. The solution of a problem of mechanics on the 

determination of such negative allowance of a drawing die and reinforcing ring 

under which the stress field created by this tension could slow down the crack 

propagation in the drawing die, which is of particular interest. 

2 Formulation of the Problem 

Let us consider a stress-strain state in a hard alloy drawing die reinforced with a 

holder under the action of loads normal and tangential to the inner contour. It is 

accepted that the inner contour of the drawing die orifice is close to annular one. 

As is known, the real surface of the tool is never absolutely smooth and always 

has micro or macroscopic irregularities of a technological character. In spite of 

exceptionally small sizes of the unevenness that generate roughness, it has an 

essential effect on various operational properties of tools [3-6]. 

It is assumed that a hard alloy drawing die is negative allowance reinforced with 

the help of an annular ring (holder) made of mean carbon steel. The allowance 

function is not known beforehand and should be defined. Let a negative allowance 

reinforced elastic drawing die with an outer cylinder (ring) have N rectilinear 

cracks of length 2lk (k=1,2,...,N). At the center of the cracks, locate the origin of 

local coordinate systems xkOkyk whose axis xk coincides with the lines of cracks 
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and makes the angle αk with the axis x (Fig. 1). It is assumed that the cracks‟ lips 

are free from external loads. Refer the two-component ring to the polar coordinate 

rθ system of having chosen the origin at the center of concentric circles L0, L, L1 

with radii R0, R, R1 (Fig. 1), respectively. 

 

Figure 1 

Calculation scheme of inverse problem of failure mechanics for a drawing die with reinforcing 

cylinder 

Consider some realization of the rough inner surface of the drawing die. We will 

assume that the plane stress state condition is fulfilled. In the area occupied by the 

two-component ring (drawing die and holder), the stress tensor components σr, σθ, 

σrθ should satisfy the differential equations of plane theory of elasticity [7]. 

Denote by E, μ and E0, μ0 the Young modulus and Poisson ratio of the drawing die 

and reinforcing ring, respectively. The boundary of the inner contour L0 is 

presented in the form: 
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Let the outer contour L1 be free from loads. The boundary conditions of the 

considered problem are of the form: 
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Here vr, vθ are radial and tangential constituents of the vectors of the displacement 

points of the contour L; g(θ) is the desired allowance function; f is the friction 

factor of the “drawing die-wire rod” pair; 1i ; p is the pressure on the inner 

surface of the drawing die. 

The temperature of the surface layers of the drawing die increases under drawing 

under the action of contact friction. By drawing on the inner surface of the 

drawing die, on the area of contact friction with wire (wire rod), there acts a 

surface heat source heat caused by the outer friction. Tangential forces τ=fp 

promote the release of heat in the contact area of the tool and the wire rod in the 

drawing process. The general amount of heat in a time unit is proportional to the 

power of the friction forces, and the amount of the heat released at the point in the 

contact zone with coordinate θ will be equal to 

  VfpQ  , 

where V is the mean displacement velocity of the wire rod with respect to the 

drawing die (drawing velocity). 

The total amount of heat Q(θ) will be consumed as follows: heat flow in the 

drawing die Qd(θ) and similar heat flow Q1(θ) for increasing the wire rod heat. 

In the case of steady heat exchange, the definition of the temperature field in the 

drawing die and annular holder may be reduced to the solution of boundary value 

problem of heat-conductivity 
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Here T is the temperature in an elastic isotropic drawing die; T0 is the temperature 

in the reinforcing cylinder; λ, λ0 are the thermal conductivity coefficients of the 

drawing die and holder, respectively;   is Laplace‟s operator; T2 is the 

temperature of environment on the external surface of the holder; α2 is the heat 

exchange from the outer cylindrical surface of the holder with external medium; 

  fpVQ
dd

   is the intensity of the surface heat source for a drawing die; αd is a 

coefficient of heat flow separation for a drawing die. 

For finding the allowance function, the statement of the problem should be 

complemented by a condition (criterion) that allows us to determine the desired 

negative allowance. 

According to the Irvin-Orovan theory [8] of quasibrittle fracture, the stress 

intensity factor is a parameter characterizing the stress state in the vicinity of the 

crack end. Consequently, the maximal value quantity of the stress intensity 

coefficient near the crack tip is responsible for the failure of the drawing die‟s 

material. Investigating the basic failure parameters and the influence of allowance 

of the drawing die‟s junction and reinforcing ring, the material properties and 

other factors on them, we can substantially control the failure by design-

technological methods, in particular by varying the negative allowance (the 

function g(θ)). Further, we accept minimization of quantity of maximal stress 

intensity factors on the vicinity of the crack tips in the drawing die. The 

minimization of the maximal value of the stress intensity coefficient will promote 

an increase in the serviceability of the drawing die of the drawing tool. 

Thus, it is required to determine the junction negative allowance g(θ) such that the 

stress field created by it in the loading process prevents the crack from 

propagating. 

Not losing the generality of the stated problem, it is accepted that the desired 

allowance function g(θ) may be represented as a Fourier series. Consequently, the 

coefficients 
kk

d

k
iA    in the expansion of the desired allowance function 

should be managed so that the minimization of the maximal stress intensity factors 

are provided. This additional condition allows to determine the desired function 

g(θ). 

3 The Case of a Single Crack 

In order to solve the stated inverse problem, it is necessary to solve a problem of 

failure mechanics for the “drawing die and reinforcing holder” pair. Represent the 

boundary of the internal contour 1

0
L  of the drawing die in the form: 

    HRr 
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parameter. 

Using a profilometer, the measurements have been made for a treated surface of 

the drawing die, and the approximate values Fourier coefficients for the function 

H(θ) describing each inner profile of the treated drawing die surface have been 

calculated for the function H(θ). 

We look for temperatures, the stress tensor components and the displacements in 

the drawing die and holder in the form of expansions in small parameter ε: 
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where the terms with ε of higher order are neglected for simplification. Here 
   0

0

0 ,TT  are zero approximation temperatures;    1

0

1 ,TT  are first approximation 

temperatures, respectively;      000 ,,



rr

 are zero approximation stresses; 

   11 ,



r

 and  1




r
 are first approximation stresses;    00 ,


vv

r
 are radial and 

tangential displacements at a zero approximation; and    11 ,


vv
r

 are first 

approximation displacements. Each of the above approximations satisfies the 

system of differential equations of the plane theory of elasticity [7]. Expanding in 

series the expressions for temperature, stresses and displacements in the vicinity 

r=R0 we obtain the values of constituents of temperature, stress sensor and 

displacement components for r=ρ(θ). 

Using the perturbations method, with regard to what has been said, we arrive at 

the sequence of boundary conditions for the boundary value problems of fracture 

mechanics for a drawing die and reinforcing cylinder 
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At each approximation, the solution of the boundary value problem of heat 

conductivity theory is sought by the method of separation of variables. We find 

temperatures t for a drawing die and t0 for a reinforcing cylinder in the form 
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determined from the boundary conditions of the thermal conductivity theory 

problem (8), (10). Because of their length, the corresponding formulae are not 

presented here. To solve the thermoelasticity problem, we will use the 

thermoelastic displacement potential [9]. 

In the considered problem, the thermoelastic displacement potential for a drawing 

die F and reinforcing cylinder F0 is determined at each approximation by the 

solution of the following differential equations 
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Here α, α0 are the coefficients of linear temperature expansion for a drawing die 

and reinforcing holder, respectively, and μ, μ0 are the Poisson ratio of a drawing 
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We can write the boundary conditions of problem (16)-(17) by means of the 
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,    
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xgzzez ;
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1 
 

 are the desired functions, 

characterizing the displacement discontinuity across the crack line 
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 43 , in the considered case 1k . 
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Using (18)-(21) for finding complex potentials      zz 0
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0

1
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we represent the boundary conditions in the form: 
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    ixpiR Re,exp
01

 . 

We denote the left-hand side of the boundary condition (24) by the function 

 i , then we have 

                   iifffe i 
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We assume that the function  i , which is a self-balanced system of forces 

acting on the reinforcing cylinder as viewed from the drawing die, can be 

expanded on the circular contour L (τ=Rexp(iθ)) in a complex Fourier series 


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k
eAi   (27) 

For determining the complex potentials   z0

0
  and   z0

0
 we have condition 

(26) on the contour L, and the condition 
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on the contour  )exp(
111

 iRL  . 
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The functions   z0

0
  and   z0

0
  are analytical in the interior of the transverse 

cross section of the reinforcing cylinder 
1

RzR   and may be represented [7] 

by the series (21). We use the power series method [7] to find the coefficients 
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ba ,  of the potentials   z0

0
  and   z0

0
 . 

For determining the still unknown quantities 
k

A , we consider the solution of the 

problem for a drawing die RzR 
0

. After some transformations of the 

complex potentials,   z0

0
  and   z0

0
  permit representing the boundary 

conditions for the functions   z0
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1
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             
















k

ik

k

i eAe   0

1

0

1

20

1

0

0
 (29) 

             









  ie20

1

0

1

0

1

0

1
 (30) 

       
652

0* 2 ifffGgeA
k

ik

k



 





  

  2

20

0

* 1 






 k

k

k

k

k

kk
RbkRaRa

G

G
A   

  2

20

0

* 1 






 k

k

k

k

k

kk
RbRakRa

G

G
A  . 

For the functions         )(,)(,,',
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 we will assume 

that they can be expanded in Fourier series 
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Here, the coefficients Dk and Bk depend on the desired function   tg 0

1
 and are 

determined by residue theory. 

The boundary conditions (23), (29) are used to determine the coefficients dk, ck 

and the boundary condition (30) is used to determine the quantities Dk. As a result, 

we find: 
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The right-hand sides of the formulas for determining the coefficients ,,,,
kkkk

cdba  

and Ak contain the coefficients of expansions of the allowance function   0g  

and also the integrals of the desired function   tg 0

1
. 

Satisfying by the functions (18) the boundary condition (17) on the crack faces, 

we obtain a complex singular integral equation with respect to the unknown 

function   xg 0

1
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Here, the variables x1, t, l1, 
0

1
z  are dimensionless quantities referred to 

 1,,
0

 knSRR
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 are determined [10] by the formulae 
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For the inner crack, to the singular integral equation we should add additional 

equality expressing the displacement uniqueness condition in tracing the crack 

contour 
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Under the additional condition (33), the singular integral equation (32) by means 

of algebraization procedure (see the Appendix in [11]) is reduced to the system of 

M algebraic equations for determining M unknowns     Mmtg
m

,...,2,10

1
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If in (34) we pass to the complex conjugate values, we will get M additional 

algebraic equations. The obtained systems of equations with respect to 
    MmtgAcdba

mkkkkk
,...,2,1,,,,, 0

1
  permit for a given allowance g(θ) to find 

the stress-strain state of a drawing die and reinforcing cylinder in the presence of a 

crack in the drawing die at a zero approximation. In the stated optimal design 

problem, the coefficients  ,...2,1,0  kiA
kk

t

k
  are to be determined. 

Consequently, the obtained united algebraic system is not still closed. For the 

stress intensity factors near the crack tips at a zero approximation we have: 
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For constructing the missing equations, we require the minimization of maximal 

value of the stress intensity factor 

  min0

max


p
K  (36) 
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with regard to restrictions connected with carrying capacity, heat stability of a 

drawing die, unavailability of plastic deformations, and also the fact that 

  ,0

max thp
KK   

where 
th

K is the characteristic of the threshold value of the drawing die material 

fracture toughness which is determined experimentally. 

At a zero approximation, the optimization problem is reduced to the definition of 

the coefficients (the control parameters) of the expansion of the allowance 

function   0g  in the Fourier series. The quantities   
m

tg 0

1
 linearly depend on 

the coefficients  0

0

tA  of the Fourier series of the allowance function   0g . 

Consequently, the quantity of the stress intensity coefficient (35) (the objective 

function) also linearly depends on the control parameters (control variables). 

Thus, using the minimax criterion, at a zero approximation, the considered 

problem is reduced to a linear programming problem. 

Numerical calculations are performed by the simplex algorithm. In expansion of 

the allowance function   0g  we were confined to seven terms. The calculations 

were conducted in conformity to the form of the drawing die N013[12]: R1=65mm; 

2R=29,5 mm; 2R0=5,7 mm. The mechanical characteristics of the drawing die 

material (hard alloy BK6;) and holders (mean carbon steel) were accepted to be 

equal to E=6,28·10
5 

MPa; ν=0,22 and E0=2,06·10
5 

MPa; ν0=0,28. The internal 

pressure p changed within 391-1960 MPa. 

After defining desired quantities of the zero approximation, we can go on to 

construct the solution of the problem at a first approximation. The functions N0 

and T0 are determined on the base of the obtained solution for r=R0. The boundary 

conditions (11) may be written in the form of a boundary value problem for 

finding complex potentials      zz 11 ,   and      zz 1

0

1

0
,  , which are sought 

in the form similar to (18)-(23) with obvious changes. The further course of the 

solution is the same as at a zero approximation. The obtained singular integral 

equation with respect to      tgtg 1

1

1

1
  ,  under additional condition of type (33) by 

means of the algebraization method is reduced to the system of M algebraic 

equations for determining M unknowns     Mmtg
m

,...,2,11

1
 . The desired 

coefficients          11111 ,,,,
kkkkk

Acdba  are contained in the right-hand side of this system. 

In the stated optimal design problem, the coefficients      111

kk

t

k
iA    

(k=0,±1,±2,…) should be defined. Consequently, the obtained united algebraic 

system is still closed. For stress intensity coefficients in the vicinity of the crack 

tips, at a first approximation we have: 
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For constructing the missing equations, we use the minimax criterion 

  min1

max


p
K  

allowing for the above-mentioned restrictions. 

The quantities   
m

tg 1

1
 linearly depend on the coefficients  1t

k
A  of the Fourier 

series of the allowance function   1g . 

Consequently, the quantity of stress intensity factor (37) (the objective function) 

also linearly depends on control parameters  1t

k
A  (control variables). Thus, the 

optimization problem at a first approximation may also be reduced to a linear 

programming problem. 

Numerical calculation was carried out by a symplex algorithm. The calculation 

results of the allowance function (the coefficients are given in mm) are given in 

Table 1 for the case 0

1
30 ;   1,0/

01
 RRl ;    12/

00

0

1
1,0 ieRRRz  ; 

p=1200 MPa. 

Table 1 

The values of Fourier coefficients of optimal allowance 

α0 α1 α2 α3 α4 α5 α6 α7 

0,1103 0,0792 0,0714 0,0642 0,0518 0,0489 0,0238 0,0157 

 β1 β2 β3 β4 β5 β6 β7 

 0,0718 0,0452 0,0423 0,376 0,0249 0,0202 0,0105 

If one of the crack ends the internal surface of the drawing die, then at each 

approximation, the equality (33) is replaced by an additional condition that 

expresses finiteness of stresses at the crack edge for r=R0. 

4 The Case of an Arbitrary Number of Cracks 

Now we assume that in the elastic drawing die near the friction surface are N 

rectilinear cracks of length 2lk (k=1,2,…,N) (Fig. 1). We consider the optimal 

design problem, or more exactly, a problem of the definition of such an allowance 

function for the junction of the drawing die and the reinforcing cylinder that 

minimization of maximal value of the stress intensity factors near the crack tips. 

In this case, the problem is solved by analogy with the problem for a single crack. 

The complex potentials    jj

22
,   and      1,0  ,

33
 jjj  are generalized to the 
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case of arbitrary many cracks. By satisfying the boundary conditions on the crack 

edges, at each approximation we obtain the system of N singular integral 

equations of the functions   
k

j

k
xg  (k=1,2,…,N). At each approximation, to the 

system of singular integral equations for the inner cracks we should add the 

additional conditions 

  



k

k

l

l

j

k
dttg 0       (j=0,1) (38) 

At each approximation, under the above mentioned conditions by means of the 

algebraization process, the system of singular integral equations is reduced to the 

system of MN   algebraic equations for determining MN   unknowns   
m

j

k
tg  

(j=0,1; n=1,2,…,N; m=1,2,…,M) 

             
r

j

n

M

m
rnmknkm
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M
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 1 1

,,
1

 (39) 
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Construction of the missing equations is realized at each approximation similar to 

the case for one crack. For the stress intensity factors in the vicinity of the crack 

end at each approximation we get 
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(j=0,1; n=1,2,…,N; m=1,2,…,M) 

Using the minimax criterion, in the case of an arbitrary number of cracks, the 

considered problem is reduced to a linear programming problem allowing for the 

mentioned restrictions. 

The numerical calculation was carried out with a symplex algorithm for the same 

form of the drawing die. It is assumed that the drawing die is provided with three 

cracks: 

     ;1,0,05,0/,45 18/
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101
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1

 ieRRRzRRl   
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0

2

 ieRRRzRRl   

     .05,0,075,0/,15 10/

00

0

303

0

3

 ieRRRzRRl   

The results of calculations of the allowance function (the coefficients are given in 

mm) are cited in Table 2. 
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Table 2 

The values of Fourier coefficients of optimal interference for the case of three cracks 

α0 α1 α2 α3 α4 α5 α6 α7 

0,1291 0,0874 0,0719 0,0648 0,0566 0,0493 0,0341 0,0207 

 β1 β2 β3 β4 β5 β6 β7 

 0,0754 0,0687 0,0546 0,0481 0,0360 0,0204 0,0127 

 

The optimal solution, i.e. the found coefficients αk and βk , promote an increase the 

carrying capacity of a drawing die (drawing tool). 

5 A Simplified Method for Solving the Inverse 

Problem 

In the case of several cracks, the amount of calculations increases. We consider a 

simplified method for solving the problem of the definition of the optimal 

negative allowance for the junction of the drawing die and the reinforcing 

cylinder. Expand the desired allowance function in the Fourier series with that 

amount of terms equal to the number of cracks tips. In the case of N internal 

cracks in the drawing die, we will be restricted by 2N coefficients of the allowance 

function expansion in the Fourier series. We require that at each approximation 

the stress intensity factors in the vicinity of cracks ends be equal zero. Adding 2N 

complex linear algebraic equations to the main resolving equations (they were 

discussed above) we get a closed algebraic system for defining all the unknowns, 

including the coefficients    j
k

j

k
 ,  (j=0,1) of the expansion of the allowance 

function into the Fourier series. 

We assume that N1 cracks have one end of a part on the internal surface of the 

drawing die. Then, the number of the cracks vertices will equal (2N-N1). In this 

case, when a part of the cracks is a surface crack, then in expansion of the desired 

allowance function in the Fourier series we will use (2N-N1) coefficients. 

Require that the stress intensity factors near vertices be equal zero. Adding      

(2N-N1) linear algebraic equations to the main resolving equations, we get in this 

case a closed algebraic system of equations for determining all the unknowns. It is 

appropriate to apply the simplified method for solving a problem on the 

minimization of fracture parameters of a drawing die involving a great amount of 

cracks, when the use of the symplex method causes a great volume of calculations. 

For the numerical solution of the obtained system of equations, we use the Gauss 

method with a choice of the principal element. Thus, the suggested methods of the 

minimization of failure parameters complete each other. 
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Conclusions 

The main equations obtained in the paper allow for the given negative allowance 

by numerical calculations, with the help of the definition of the stress intensity 

factors, to predict the growth of cracks existing in the drawing die and to establish 

the admissible level of deficiency and the maximal values of operation loads 

providing a sufficient reliability margin. At the design stage, the solution of the 

optimal design problem of the definition of the negative allowance in the junction 

of the drawing die and the reinforcing cylinder permits finding the optimal 

geometric parameters of the drawing die and the reinforcing cylinder, which 

ensures an increase in the carrying capacity. It should be noted that the obtained 

results are applicable in the case of a brittle fracture. 
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