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Abstract: In this paper, we consider video stream prediction for application in services like 
video-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict the 
video stream for an efficient bandwidth allocation of the video signal. Efficient prediction 
of traffic generated by multimedia sources is an important part of traffic and congestion 
control procedures at the network edges. As a tool for the prediction, we use neural 
networks – multilayer perceptron (MLP), radial basis function networks (RBF networks) 
and backpropagation through time (BPTT) neural networks. At first, we briefly introduce 
theoretical background of neural networks, the prediction methods and the difference 
between them. We propose also video time-series processing using moving averages. 
Simulation results for each type of neural network together with final comparisons are 
presented. For comparison purposes, also conventional (non-neural) prediction is 
included. The purpose of our work is to construct suitable neural networks for variable bit 
rate video prediction and evaluate them. We use video traces from [1]. 

Keywords: data prediction, video traffic, neural network, multilayer perceptron, radial 
basis function network, backpropagation through time 

1 Prediction of Video Traffic 
The role of dynamic allocation of bandwidth is to allocate resources for variable-
bit rate (VBR) video streams while capturing the bursty character of video traffic. 
By using prediction schemes, it is possible to increase utilization of network 
resources and to fulfill QoS (quality of service) requirements [2]. 

Multimedia traffic, especially MPEG video traffic became dominant component of 
network traffic. It is due to excessive use of services like video-on-demand (VoD), 
videoconferencing, broadcast and streaming video. Periodic correlation structure, 
complex bit rate distribution and noisy streams are some characteristics of MPEG 
video traffic [3]. Some traffic and congestion control procedures must be used, 
among which connection admission control (CAC), usage parameter control 
(UPC), traffic shaping, congestion indication, priority control, packet discarding 
are examples of the most important procedures. 
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The design of a bandwidth allocation scheme for VBR video is very difficult [4]. 
This is due to bursty character of such traffic, while at the same time VBR video 
requires strongest QoS characteristics such as delay, loss and jitter. 

Neural networks are generally considered to be one of the most effective tools for 
prediction. Due to their analogy with biological neural networks (human brain), 
they seems to be suitable to solve prediction related tasks. For prediction, herein 
we use feedforward networks – multilayer perceptron (MLP) and radial basis 
functions (RBF) network, and recurrent backpropagation-through-time (BPTT) 
network. 

2 Neural Networks 

2.1 Neuron, Neural Network and Learning 
The origin of artificial neural networks (ANN) [5] was inspired by the biological 
nervous system. The main inspiration was the human brain and the way it 
processes information. The human brain consists of very large number of elements 
(neurons), which are massively interconnected. 

The basic element of each ANN is the neuron. The basic scheme of the neuron is 
shown in Fig. 1. Connecting such elements in various ways leads to different 
architectures of neural networks. 
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Figure 1 

Basic model of neuron 

The ANN learns by example. Learning (in the terminology of neural networks) is 
the process by which the weights are adapted. This process is represented by a 
learning algorithm. Many learning algorithms exist [5], [6], they differ in the way 
they adjust the weights of particular neurons. In this paper, we use the supervised 
learning paradigm [5], [6]. 
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2.2 Multilayer Perceptron 
The multilayer perceptron (MLP) [5], [6] is probably the best-known and 
frequently used neural network. It consists of one input and one output layer and it 
can contain one or more hidden layers of neurons. For this type of networks, the 
sigmoidal activation functions (including most popular logistic function) are 
mainly used. 

MLP is trained by the backpropagation algorithm [5], [6]. The error signal of 
neuron j is defined as the difference between its desired and actual output: 

( ) ( ) ( )nyndne jjj −=  (1) 

From error signal, the local gradient needed for the backpropagation algorithm can 
be computed: 

( ) ( ) ( )( )nvnen jjjj ϕδ ′= , (2) 

where ( )nv j  is the inner activity of the neuron. 

Then the weight adaptation is done as follows: 

( ) ( ) ( )nynnw ijji ηδ=Δ , (3) 

where ( )nwjiΔ  is the weight adjustment in time n, η  is the learning rate, ( )njδ  is 
the local gradient and ( )nyi  is the input signal of neuron j. 

In general, we can write 

( ) ( ) ( )nwnwnw jijiji Δ+=+1  (4) 

If the neuron is the output neuron of the network, then we can use the presented 
algorithm to compute the weights adaptation. But if it is a hidden neuron, its 
desired output is not known and this is why the error signal for the hidden neuron 
has to be calculated recursively from the error signals of the neurons directly 
connected to the neuron (from output layer). 

2.3 RBF Networks 
When we look at the design of the neural networks from the perspective of 
approximation in multidimensional space, then learning is equivalent to finding 
such a plane in the multidimensional space which best approximates the training 
data. Neurons in the hidden layer represent a set of functions which represents the 
basis functions for the transformation of input vectors to the space of hidden 
neurons. These functions are called the radial basis functions (RBF) [7], [8], [5], 
[6]. 

The interpolation scheme using RBFs can be represented as follows 
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Function ( )xf  is the interpolation function which uses N  radial basis functions 

iφ , where NiRR p
i ,,1,: K=→φ  and ( )ii cx −=φφ , RR →+:φ , pR∈x , 

⋅  is norm on pR  (often Euclidian), p
i R∈c  are centers of RBFs, jw  are 

coefficients for linear combination of RBFs which we want to find. 

Since ( ) Nidf ii ,,1, K=∀=x , we get the equation (5) in matrix representation 
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where the elements of the matrix are 

( ) Njijiij ,,1,, K=−= cxφφ . (7) 

When φ  is a regular matrix we can find one exact solution. Many functions 
guarantee the regularity of the matrix. The most common is the Gaussian function 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

2
exp

σ
φ xx , (8) 

where σ  is the width of the Gaussian RBF. 

Presented scheme can be easily extended to mapping qp RRF →: , F and d are 
then in the form ( )qff ,,1 L , ( )qdd ,,1 K , respectively. 

The fact, that the number of RBFs is the same as the number of data points that are 
to be interpolated is a main disadvantage of interpolation scheme. Typically, there 
is a smaller number of RBFs compared to the number of given data points. Then 
we speak about approximation scheme, the matrix φ  is no more square and its 
inverse matrix does not exist. Solution can be found by least-squares 
optimalization method, by pseudoinverse matrix or by RBF neural network with 
hidden neurons representing radial basis functions. 

The training process of RBF network then consists of three steps. The first step is 
to find the centers of the basis functions. The second step adjusts additional 
parameters of RBFs (if any). The third step serves for output weights computation. 
More information about the training can be found in [7] and [8]. 
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2.4 BPTT Networks 
The backpropagation through time (BPTT) neural network [5], [9], [10], [11] 
belongs to a class of recurrent neural networks. Such networks contain feedback 
connections. Their training algorithms often compute the gradient of an error 
measure in weight space. BPTT learning algorithm is based on unfolding the 
temporal operation of the network into a multilayer feedforward network, where 
one layer is added at every time step. In this manner, the network is converted 
from a feedback system to purely feedforward system. The gradients of weights 
for a recurrent network are approximated using a feedforward network containing 
a fixed number of layers. More details about the BPTT networks and training 
algorithms can be found in [9], [10], [11]. 

2.5 Optimal Linear Prediction 
One of the methods to predict the future samples of a time series is the 
autocorrelation method of autoregressive (AR) modeling. The idea of this method 
is to find the best coeficients of a prediction filter [12]. 

If we assume as in [13] that the video transmition rate sequence for linear 

prediction is , then the estimated (predicted) series can be expessed as 
follows: 

 (9) 

Coeficients  are the coeficients of the prediction filter and m is the order of 

AR model. The coeficients  are computed by the following equations: 

 (10) 

where 

, ,  (11) 

and m is the length of input vector . Through the least squares problem using the 
equation 

 (12) 

we come to the Yule-Walker equations [12] 
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, (13) 

where the factor  is an autocorrelative estimation of the input vector . This 
equation can be solved using the Levinson’s recursion [12]. 

3 Simulation Results 

3.1 Used Data Set and Simulation Tools 
The data used for the training and test sets is taken from the video stream files of 
Telecommunication Networks Group, Technical University of Berlin, Germany 
[1]. We used trace file from MPEG-4 Jurassic Park I movie in high quality. Both 
the training and the test set consist of 2000 patterns (first 2000 representing the 
training, next 2000 the test set) and they are shown in Fig. 2. Traces from [1] were 
also used etc. in [2], [3]. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
TRAINING set

Frame No.

N
or

m
al

iz
ed

 L
en

gt
h 

O
f 

F
ra

m
e

 
2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
TEST set

Frame No.

N
or

m
al

iz
ed

 L
en

gt
h 

O
f 

F
ra

m
e

 
Figure 2 

Training (left) and test (right) sets – originals 

Our predictions were based on taking N previous patterns to predict one following 
pattern. Since we used a supervised learning paradigm, our networks worked with 
desired values of target patterns during the training process. 

All our simulations were done using Stuttgart Neural Network Simulator [14] and 
Matlab environment [15]. 
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3.2 Prediction by MLP 
In order to achieve good results, probably one of the most important problems is 
to choose the appropriate configuration of neural network. During training of 
MLPs, we tried many types of configurations for our predictions. There were 
notable differences of prediction errors among them. We chose the MSEnorm 
(normalized mean square error) as an objective criterion to compare them. 

We made experiments with the number of input neurons changing from 1 to 7 and 
also experiments with various number of hidden neurons and number of hidden 
layers. We achieved the best results of training the MLP network using network 
configuration 3-10-1 (which means: 3 input neurons, 10 neurons in hidden layer, 1 
output neuron), Levenberg-Marquardt training algorithm and learning-rate 
parameter 0.1. The results of the prediction for the training and test set are shown 
in Fig. 3. The detail of the test set can be seen in Fig. 4. 
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Figure 3 

Prediction results for training (left) and test (right) set by MLP network 3-10-1 
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Figure 4 

Prediction results for test set by MLP network 3-10-1– detail 
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In order to make the prediction more effective, it is possible to take also the 
character of the time series into account. For our data, approximately each 12th 
pattern forms a peak (in other words, the distance of the consecutive peaks is 
mostly 12 patterns). This is why we chose also 12 input patterns (besides our 
examined 3 inputs) for the prediction. The result for test set can be seen in Fig. 5 
for MLP with configuration 12-20-10-1 (again, this is the most appropriate 
configuration after doing examination of various MLP configurations). 
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Figure 5 
Prediction results for test set by MLP network 12-20-10-1– detail 

3.3 Prediction by RBF Networks 
In this section, we present the results of the RBF neural networks. We have tried 
different network configurations. Similar to searching optimal network 
configuration for MLPs, we tried various number of input and hidden neurons 
(unlike MLP, RBF network contains exactly one hidden layer). Fundamental 
question when using RBF networks is the number of hidden neurons to be used. 
The number of hidden neurons for our experiments altered from 10 to 2000. We 
have found out that the best approach for our data is to use 500 hidden neurons. 
We present best results achieved by network configuration 3-500-1. The results 
for the training and the test sets for this network are shown in Fig. 6. Fig. 7 
contains detail for the test set. 

Similar to MLP, we examined also RBF networks with 12 inputs (due to peak 
nature of video stream). The result is shown in Fig. 8. 
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Figure 6 

Prediction results for training (left) and test (right) set for RBF network 3-500-1 

 

Figure 7 
Prediction results for test set by RBF network 3-500-1 – detail 
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Figure 8 
Prediction results for test set by RBF network 12-500-1 – detail 
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The comparison between RBF network of the configuration 3-500-1 and 3-2000-1 
network is shown in Fig. 9. By comparing the values of the MSE for both 
networks, one can see that 3-500-1 RBF network behaves better. 

As we mentioned earlier, our training and test sets both have 2000 elements. It 
means that if we create a RBF network with configuration 3-2000-1 then each 
hidden neuron represents one element of the training set. This approach is known 
as an interpolation scheme. The approximation scheme means that we use less 
then 2000 neurons in the hidden layer. 

 
Figure 9 

The comparison of two RBF networks (left: 3-500-1, right 3-2000-1) – details 

In both graphs of Fig. 9 the details are shown, so we can see not only the MSE of 
the two networks, but it is also possible to compare the subjective performance. 

3.4 Prediction by BPTT Network 
For the BPTT networks, we used similar approach as for other neural network 
models. At first, we tried different configurations, until we found one with the best 
values of MSE. Starting with five hidden neurons only, the results were 
unsatisfactory, so we chose other configurations. The configuration containing 20 
hidden neurons gave best results. 

The configuration used by the BPTT is 3-20-1. The results are shown in Fig. 10 
with detail included in Fig. 11. Comparing the values of MSE, we can see that the 
results for the BPTT networks are comparable with those of other neural 
networks. 

Fig. 12 shows detail of the prediction using BPTT network with 12 inputs 
(motivation for using 12 inputs is the same as for MLP and RBF networks 
discussed above). 
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Figure 10 

Prediction results for training (left) and test (right) set for BPTT network 3-20-1 
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Figure 11 
Prediction results for test set by BPTT network 3-20-1 – detail 
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Figure 12 
Prediction results for test set by BPTT network 12-20-1 – detail 
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3.5 Predictions Using Moving Average 
Since presented trace files contain fast changes (peaks), one can expect better 
results when processing them not directly but using some technique to make the 
input signal smoother (simpler). Therefore we propose simple method of using 
moving averages as the input to neural network to eliminate the fast changing of 
signal. The principle of the moving averages (MA) is shown in Fig. 13. 

We take N patterns of the original signal and compute the moving averages 
(summation of patterns divided by N, we move forward over one pattern) and we 
predict next pattern from M values of MA. Since at the time when we are 
predicting the next MA we know the previous patterns of the original signal too, 
we can obtain the next pattern of the original signal easily. We just need to 
multiply the predicted MA by N and subtract the last N-1 known patterns of the 
original signal (see Fig. 13). 
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Figure 13 
The principle of the moving average prediction 

We can see the method of prediction of 8th pattern (P8) of the original signal in 
Fig. 13. Each MA is calculated from five corresponding patterns (e.g. MA1 = 
1/5*Σ P(1-5)) and the next MA is predicted from three previous MA. It means, 
when we already know MA1 to MA3, we predict MA4 from them. Because the 
original patterns P4-P7 are known at that time, we just need to use inverse 
sequence of steps – we multiply MA4 by five and subtract the sum of P4-P7. The 
result is the next pattern of the original signal, i.e. P8. 

The main advantage of this prediction method is that the input to the neural 
network is not the original data, but much less dynamic data (especially if we 
compute the moving averages for such number of patterns that each MA contains 
one peak only) – then MA input is evidently smoother than the original signal. 
One of the disadvantages is that small error of MA prediction can cause large error 
of the original signal during its reverse calculation from MA. 

Moving averages from 12 patterns of training and test sets are shown in Fig. 14. 
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Figure 14 

Moving averages of 12 patterns for training (left) and test (right) set 

Prediction results using moving average for MLP network with configuration 3-
10-1 are shown in Fig. 15 (with detail of the test set shown in Fig. 16). 
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Figure 15 

Prediction results for training (left) and test (right) set using moving averages for MLP network 3-10-1 
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Figure 16 

Prediction results for test set using moving averages for MLP network 3-10-1 – detail 
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We applied the concept of moving average also for MLP with 12 inputs because 
of periodic appearance of peaks in time series. The result is shown in Fig. 17. 
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Figure 17 
Prediction results for test set by using moving averages on MLP network 12-20-10-1 – detail 

The results for RBF network using the concept of moving average are shown in 
Fig. 18. The presented network configuration is 3-500-1. Fig. 19 contains detail of 
moving average simulation for RBF network with 12 inputs. 

 
Figure 18 

Prediction results for training (left) and test (right) set for RBF network 3-500-1 
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Figure 19 
Prediction results for test set by using moving averages on RBF network 12-500-1 – detail 

3.6 Comparison 
Tab. 1 and Fig. 20 show best prediction results obtained by networks with three 
inputs. We got the best results using BPTT network of configuration 3-20-1 for 
both sets of data (normalized MSE for the training set and test set is 0.0025819 
and 0.0028644, respectively). Although the results for other types of networks are 
little bit worse, the differences are visually not so significant. Tab. 1 also includes 
results from the prediction using LP (linear predictor) with 12 and 75 coefficients. 
In Fig. 20, the results for LP with 75 coefficients are shown. 

Table 1 
The comparison of MSE for the networks with 3 inputs and comparison with LP 

Network Training set Test set 
MLP 3-10-1 0,0033981 0,0032089 
RBF 3-500-1 0,0050464 0,0031946 
BPTT 3-20-1 0,0025819 0,0028644 
MLP-MA 3-10-1 0,0029892 0,0032377 
RBF-MA 3-500-1 0,0028079 0,0033822 
LP - 12 coeff. 0,0159024 0,0085851 
LP - 75 coeff. 0,0065945 0,0057113 
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Figure 20 

The comparison of results of test set for all types of networks using 3 inputs and comparison with LP 

As we already discussed, our examined streams contain peaks, approximately at 
each 12th position. This is why we simulated also neural networks with 12 input 
neurons. The values of normalized MSE for networks using 12 inputs are shown 
in Tab. 2 and in Fig. 21 (also the comparison with LP is present). 

Fig. 22 presents summary of best results obtained using neural networks with 3 
and 12 input patterns and the comparison with the linear predictor using 75 
prediction coefficients. It can be seen that better results can be obtained using 12 
inputs. Since there was exactly one peak in each set of patterns fed to the network, 
it has learned the positions of the peaks better. Of course, the disadvantage of this 
way of prediction is that it strongly depends on used video stream – and different 
streams can have different distance between the peaks (eventually, the stream does 
not need to contain peaks in such periodic manner). 

Table 2 
The comparison of MSE of the networks with 12 inputs and LP 

Network Training set Test set 
MLP 12-20-10-1 0,0012937 0,0015330 
RBF 12-500-1 0,0005020 0,0031786 
BPTT 12-20-1 0,0010890 0,0015967 
MLP-MA 12-20-10-1 0,0025311 0,0027673 
RBF-MA 12-500-1 0,0028079 0,0033822 
LP - 12 coeff. 0,0159024 0,0085851 
LP - 75 coeff. 0,0065945 0,0057113 
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Figure 21 

The comparison of results of test set for all types of networks using 12 inputs and comparison with LP 

Figure 22 
The comparison of results of test set of networks with 3 and 12 inputs and comparison with LP 

Conclusions 

Efficient data compression methods followed by efficient prediction schemes are 
very important in order to achieve required QoS of multimedia traffic. 

The goal of this paper was to predict the video time series for an efficient 
bandwidth allocation of the video signal using neural networks. The application of 
presented methods is in traffic and congestion procedures of communication 
networks. 
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We have tried many configurations and types of neural networks for video stream 
data prediction. First, we tried to find suitable network configurations. This 
process led us to using three input patterns in each step of prediction. As we can 
see in Fig. 20, the best results of prediction for test set were achieved by using 
BPTT network with configuration 3-20-1, while the results achieved by MLP with 
configuration 3-10-1 and RBF with configuration 3-500-1 were a bit worse and 
both comparable. 

Although the results for the networks using MA were very similar to the networks 
without MA concept, the network training was much faster (for both MLP and 
RBF network) which could be useful for adaptive prediction systems. Especially 
RBF network training using MA takes approximately 50% time duration 
comparing to “direct” approach to prediction. 

For comparison purposes, we tried to predict the data using 12 input patterns. We 
chose 12 patterns in order to have just one peak in each step of prediction. Of 
course, the number of input patterns was found empirically and it depended on the 
behavior of the time series. Although better prediction results can be obtained in 
such manner, it is evident that the mentioned number of input patterns is not 
suitable for any type of time series. 

In order to compare neural and conventional prediction, we presented the results 
of linear predictions. As can be seen from Figs. 20, 21 and 22 the results of neural 
networks are significantly better. 

From Fig. 22, we can see that the best results of prediction for three inputs can be 
achieved by BPTT network. The results for other types of network were for a 
certain extent worse; especially the result of test set for RBF network was 
obviously the worst (even though the result for the training set was the best of all 
networks). 

Besides efficient prediction schemes also efficient data (herein video data) 
compression methods must be used. These compression methods must take QoS 
requirements into account. Optimization of compressed bit flows is necessary; 
such optimization can be based on channel capacity (allocation of sufficient bit 
flow through a channel) or on receiver quality requirements. Example of such 
optimized coder can be found in [16]. 

Yet other approaches lowering requirements for channel coding are used. MPEG 
(as well as JPEG) standard uses block-based coding techniques. For high 
compression ratios, the effect of block loss or random bit error during 
transmission can cause a serious problem. It is possible to use error concealment 
algorithms [17] in block-based image coding systems, where the information of 
pixels surrounding a damaged block is used to reconstruct the damaged or lost 
blocks. 

At the same time, it is necessary to take into account some other facts. Recent 
papers show that video traffic is of self-similar nature. In [18], VBR (variable bit 
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rate) MPEG-4 video is studied from the point of view of self-similarity. Authors 
show that modeling video sources by short-range dependent models can be 
unsatisfactory. VBR video may exhibit scaling behavior and thus long-range 
dependence must be considered. Due to its nature, wavelet-based methods can 
serve as a suitable tool to evaluate self-similarity [18], [19] and to determine its 
parameters like H (Hurst) parameter [19]. 
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