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Abstract: This paper gives an extension to the Iterative Feedback Tuning (IFT) approach 

that ensures the performance improvement of state feedback control systems for single 

input processes. IFT employs sensitivity functions and the experiments conducted on the 

real-world control system in order to provide an efficient way to deal with the nonlinear or 

ill-defined processes when the model-dependent Linear-Quadratic Regulator (LQR) is not 

successful. An experimental setup is suggested to implement the real-time iterative 

calculation of the gradients in the minimization of the LQR’s objective function. The 

experimental results validate the performance of the proposed IFT algorithm in a 

mechatronics application which deals with the angular position controller for a DC servo 

system with actuator dead zone and control signal saturation. The results show the 

reduction of the LQR’s objective function for a single input process application. 
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1 Introduction 

The improvement and optimisation of control system (CS) performance is 

normally obtained by minimizing objective functions (OFs) with several 

expressions [1]-[9] including integral quadratic performance indices. This also 

provides a convenient way to deal with the degrees of freedom associated with the 

pole placement design of Multi Input-Multi Output (MIMO) systems. 
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The Linear-Quadratic Regulator (LQR) approach, which is frequently used for the 

tuning of the optimal state feedback CSs, can actually be used only when 

linearized or linear models of the process and the knowledge on all state variables 

available for feedback are assumed. Alternatively, the Iterative Feedback Tuning 

(IFT) [10]-[12] offers a direct data-based offline-adaptive controller tuning 

strategy. IFT solves the problem by a gradient-based minimisation of the OF using 

data collected from the real-world CS. Attractive applications of IFT reported in 

the literature are chemical process control [13], servo drive control [14], [15], 

nonlinear process control [16]-[18], on-line IFT control of processes that vary over 

time [19] and IFT combined with fuzzy control [20]. 

We discussed in [21] the signal processing aspects of the IFT-based state feedback 

control for second-order positioning systems which have an integral component. A 

state-space formulation of IFT is analyzed in [22], and the solution converges to 

the analytical solutions for the state feedback gain matrix and to the Kalman gain. 

A Linear Quadratic Gaussian (LQG) formulation supported by the transfer 

function formulation, validated by digital simulation results for a first order 

process, is offered in [23]. Another LQG formulation dedicated to servo systems 

control with the Kalman filter state observer was validated in our recent paper 

[24]. 

This paper presents an extension of IFT for the optimal state feedback control 

techniques. Our state feedback CS estimates the OF gradients directly on the basis 

of measurements carried out during the CS operation. The accent is put on the 

interpretation of the results obtained in the particular case where a LQR-based 

tuning is attempted. An original IFT-based approach based on a data-based 

algorithm to improve the performance of state feedback control systems for single 

input processes is offered. A comparison between the model-based design for state 

feedback optimal control systems (the LQR problem) and the experimental-based 

design using IFT is carried out. 

The LQR approach is applied in this paper to initially tune the parameters of the 

state feedback controller, and our approach ensures further improvement of the CS 

performance. This improvement is achieved by the alleviation of the OF using 

experiment-based information from the real-world CS. Our approach makes use of 

the LQR to guarantee that the initial controller is sufficiently close to the optimal 

one for the gradient scheme to converge. Our approach is appealing due to several 

situations that can occur in practice: differences between process models and 

reality, process changes in time and modifications of performance specifications. 

This paper is structured as follows: the next section discusses the general 

framework to for tuning the state feedback CSs by means of IFT. Section 3 

focuses on the new IFT algorithm. Section 4 is dedicated to the case study of an 

IFT-based angular position controller for a DC servo system with actuator dead 

zone and control signal saturation. Several practical recommendations for CS 

designers are also given. The conclusions are highlighted in Section 5. Appendix 1 
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shows the connection between the LQR OF, which drives the analytical solutions 

of the optimisation problem, and the IFT OF, which is subjected to practical 

evaluations in our data-based algorithm. 

2 IFT of State Feedback Control Systems 

Let us consider a process characterized by the single input discrete-time linear 

time-invariant (LTI) state-space model 

),( )( )(

),( )( )( )1(
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where Nk  is the discrete time argument, u is the control signal, 
nT

nxx Rx  ]...[ 1
 is the state vector, n is the system order, yn

Ry  is 

the controlled output, 
nnRA , 

1 nRB , 
nnRB , 

nnyRC , 
nnyRC  are constant matrices, and 

n
Rw  and yn

Rv  are the 

uncorrelated process noise vector and measurement noise vector, respectively. All 

elements of the vectors w and v are normal independent identically distributed 

random variables with zero means and variances 
2

w  and 
2

v , respectively. Zero 

initial conditions are assumed throughout the paper for the process dynamics 

without generality loss. The process is supposed to be controllable and observable. 

The vector y is the controlled position and speed in the cases of positioning 

systems and of servo systems in several applications [25]-[32], but our approach is 

not limited to positioning systems, servo systems or mechatronics. The transfer 

characteristics of the actuator and of the measurement instrumentation of the state 

variables nixi ...1  ,  , are both included in the process. The corresponding 

deterministic discrete-time LTI state-space model of the process is 
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The following infinite horizon quadratic performance index can be imposed as 

performance specification of the CS such that its minimization can ensure very 

good CS performance: 







0

2 )],( ),(  ),([)(
k

T kukkI ρρxQρxρ ,    (3) 
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where 
T

n ]...[ 1 ρ  is a parameter vector, the state vector and the control 

signal are parameterised by ρ , and the weights are 

0  ,...1,  , ,][  ,0 ...1,   njiqqq jiijnjiijQQ .   (4) 

The parametric optimisation of the state feedback control systems can be 

formulated as the following optimisation problem of finding the optimal parameter 

vector 
*
ρ  which corresponds to the optimal gain matrix 

T)( *
ρ : 

)(minarg
          

*
ρρ

ρ

I .       (5) 

The solution to the discrete-time infinite horizon optimisation problem defined in 

(5) is the control law ),()(),( *** kku T ρxρρ   which together with (2) drives 

the state vector to zero under the CS‟s spectrum characterized by the system 

matrix 
Tcl )( *ρBAA  . 

The reference inputs are commonly introduced for each state variable when it is 

needed to drive the state vector to a different point in the state space. The resulting 

state feedback controller is defined in terms of the control law 

),,()(),(

],...[  ),,(),( 1
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kku n
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ρρeρρ
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
    (6) 

where 
T

nrr ]...[ 1r  is the reference input vector, 
ir  are the reference inputs 

that correspond to the state variables nixi ...1  ,  , 

T

nnn xrexre ]...[ 111 e  is the state control error vector that 

consists of the state variable errors niei ...1  ,  , 
T
ρ  is the state feedback gain 

matrix, referred to also as the gain matrix, ρ is the parameter vector, and T 

indicates the matrix transposition. The vector e is applied as an input to the state 

feedback gain matrix 
T
ρ  as shown in Figure 1, where P is the process and C is 

the controller, and the difference from the matrix C in (1) will be pointed out in 

the sequel when necessary. 

 

Figure 1 

State feedback control system structure 
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Introducing reference inputs for the state variables, the optimisation problem 

defined in (5) makes use of the following modified OF: 







0

2 )],( ),(  ),([)(
k

u

T kkkI ρeρeQρeρ ,    (7) 

where the control signal error ),( keu ρ  is defined as the difference between the 

control signal and its steady-state value ),( ρu : 

),(),(),(  ρρρ ukukeu
.      (8) 

In order to apply the IFT to solve the optimisation problem (5), using the OF 

defined in (7), we will use a modified OF, referred to as J, defined as follows over 

the finite time horizon N for reasons of practical evaluations of the OF: 





N

k

u

T kekkJ
0

2 )],( ),(  ),([)( ρρeQρeρ .    (9) 

The OF (9) can be represented by the following approximation if N is sufficiently 

large to capture all transients in the CS response: 

)()( ρρ JI  .                   (10) 

IFT algorithms can conveniently be employed to find a solution 
*
ρ  to the 

optimisation problem 

)(minarg
          

* ρρ
ρ

J

SD

 ,                  (11) 

where DS stands for the stability domain of all state feedback gain matrixes that 

ensure a stable CS. The two optimisation problems defined in (5) and respectively 

in (11) essentially are equivalent. However, differences may appear due to the 

infinite and respectively the finite time horizons in the OFs and to the more 

general stochastic framework that is necessary to be taken into consideration when 

the IFT problem is set. 

The finite time optimal state feedback control problem is characterized by a time-

varying gain matrix, while the infinite time state feedback optimal control problem 

is characterized by a steady-state gain matrix 
T
ρ . The calculation of the matrices 

used in both cases requires process models that are affected by modelling and 

identification errors. In order to solve the optimisation problem (11), a parameter 

vector ρ has to be found such that 

TT

n

JJJ
]0...0[]...[

1















ρ
,               (12) 
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which, for an OF J defined in (9), becomes 
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e
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.              (13) 

The cases of constrained optimisation problems use the Karush-Kuhn-Tucker 

optimality conditions instead of the null gradient given by (12). 

Partial derivatives 

l

ie




 and 

l

ue




 need to be first calculated in order to obtain the 

derivatives nl
J

l

...1  , 



, in the gradient of the OF. We will present in the next 

section an experimental method developed to calculate these partial derivatives. 

The IFT algorithms are presented as follows in the more general stochastic 

framework. Therefore the OF defined in (9) and evaluated on a finite-time horizon 

becomes a random variable and therefore should be defined as 

})],( ),(  ),([{)(
0

2



N

k

u

T kkkEJ ρeρeQρeρ ,              (14) 

where E{ } is the expectation with respect to the stochastic disturbances. 

However, the deterministic case results in the simplification of the IFT algorithms. 

The IFT algorithms can solve the optimisation problem defined in (14) by using 

the Robbins-Monro stochastic approximation algorithm, which iteratively 

approaches a zero of a function without the need to know its complete expression. 

There is no need for evaluations of the OF, but its first and eventually second 

partial derivatives are important. This result holds not only for the tuning approach 

based on sensitivity functions, but also the stochastic convergence is ensured with 

useful consequences when dealing with real world processes. The parameter 

vector ρ values are iteratively updated according to the following equation: 

0  )],([)( 11 



  iiiiii J

est Rρ
ρ

Rρρ ,               (15) 

where Ni  is the current iteration/experiment index, 0 i
 is the step size, 

)]([ iJ
est ρ

ρ


 is the unbiased estimate of the gradient, and the regular matrix R

i
 

can be the estimate of the Hessian matrix, the Gauss-Newton approximation of the 

Hessian, or the identity matrix in the case of less demanding and slower 

convergent computations. The step size sequence 
N i

i}{  should evolve in time 

such as to satisfy some bounds. With this regard the conditions to ensure the 

convergence of the stochastic algorithm are given in [10], [12], [22]. 
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3 Description and Implementation of IFT Algorithm 

LQR requires always a linearized model or a collection of local models of the 

process (e.g., in the gain scheduling approach) in order to calculate the optimal 

parameter vector 
*
ρ  which corresponds to the optimal gain matrix 

T)( *
ρ . The 

identification problem itself is a rather complex undertaking in the case of MIMO 

systems, which requires a special design of the experiments. 

On the other hand, the IFT-based approach does not need exact process models, 

and special gradient experiments can be conveniently designed to avoid abnormal 

operation regimes. The initial tuning of the gain matrix is not a problem in the 

case of the LQR-based approach. However, finding an initial stabilising controller 

without knowing the process is not a trivial task. Finally, the IFT can be used to 

fine tune controllers for nonlinear processes under constraints [16]. 

The IFT-based approach offers a notable degree of flexibility. The OF (11) is not 

only weighting the state variable errors and the control signal error associated with 

the LTI state-space model of the CS defined in (1), but it can weigh the reference 

model tracking error trajectories as well. As shown in [18], the IFT can be used as 

an alternative solution to the popular pole placement design of optimal state 

feedback controllers. However, the form in which it is used here is similar to the 

classical LQR optimisation problem. 

As mentioned in the previous section, the main advantage of the IFT resides in its 

gradient computation algorithm together with the stochastic convergence result. 

The MIMO IFT-based approach is particularly well suited to solving the 

optimisation problem defined in (9). From (1) and (6), the LTI state feedback CS 

is characterized by 

  
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where 
11

 )(   n

u q RP x
 is the process pulse transfer matrix operator from the 

input u to the state vector x, 
nnq  RP xw )( 1

 
 is the disturbance pulse transfer 

matrix operator from the process noise vector v to the state vector, and w, x and u 

are defined in accordance with (1). The dependence of the variables involved in 

(17) on ρ  is underlined accordingly. 

As suggested in (13), we need to calculate the derivatives 

l

ie




. Taking into 

account the state feedback control law defined in (6) and the fact that r does not 

depend on ρ , the partial derivatives obtain the expressions 



M.-B. Rădac et al. Experiment-based Performance Improvement of State Feedback Control Systems 

 – 12 – 

....1,  ,
),(),(),(

,
),(),(

nli
ukuke

kxke

lll

u

l

i

l

i

























ρρρ

ρρ

               (18) 

The derivative of the CS state vector with respect to a certain process parameter 

nll ...1 ,  , can be expressed as 
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u
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k
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Similarly, the derivative of the control signal in the state feedback control law 

expressed in (6) with respect to the same parameter nll ...1 ,  , is 

l

T

l

T

l

k
k

ku













 ),(
 ),(

),( ρx
ρρe

ρρ
.                (20) 

The derivative of the gain matrix 
Tρ  with respect to one parameter 

l  is a row 

vector with the same dimension as 
Tρ , but with a single nonzero element that 

takes the value 1, and when multiplied by e it keeps only the 
thl  state variable 

error. The derivative of the control signal is then 
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             (21) 

where el is the 
thl  state variable error. Equation (21) shows how to conduct the 

gradient experiments with the process: by injecting an additive term in the control 

signal of the state feedback CS and letting the reference input vector r equal to 

zero, the derivatives of the state variables and of the control signal with respect to 

the parameter 
l  in T

ρ  are obtained. The injected term is 
le , i.e., the 

thl  element 

of the state control error vector obtained in a normal experiment. All specific 

experiments of IFT are described as follows. 



Acta Polytechnica Hungarica Vol. 10, No. 1, 2013 

 – 13 – 

An initial experiment, called the normal experiment, is carried out to record the 

evolution of the state variables and the corresponding state variable errors and 

control signal error respectively, in the state feedback CS shown in Figure 1. 

Other n gradient experiments are then subsequently carried out in order to 

calculate estimates of the derivatives 

l

ix




 and 

l

u




, and use is made of (17) and 

(21). Let l denote as a superscript the 
thl  gradient experiment corresponding to 

nll ...1 ,  : 
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Equation (22) provides the basis for the experimental setup (illustrated in Figure 

2) employed in the iterative calculation of the partial derivatives 

l

ix




 and 

l

u




 

needed in the minimization of the OF. We actually obtain at each gradient 

experiment the estimates of the gradient of the state variables with respect to the 

gain matrix parameters. In other words, the state variables of the gradient 

experiments are actually the gradient estimates. This is because at each experiment 

the process noise acts upon the CS. Equation (22) results in 

l

lE





x
x }{ . 

 

Figure 2 

Experimental setup to compute 

l

ix



  and 

l

u



  

The IFT algorithm consists of the following steps: 

- Step 0. Set the step size, the initial controller parameters 
0ρ  and the weights 

in the OF. 

- Step 1. Conduct the initial (normal) experiment making use of the CS 

structure presented in Figure 1 and record the evolution of all state variables. 
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- Step 2. Conduct the n gradient experiments making use of the experimental 

setup presented in Figure 2 to obtain all partial derivatives 

l

ix




 and 

l

u




. 

- Step 3. Conduct the normal experiment again such that the states contain 

realizations of noise that differ from the noise at step 2 to ensure the unbiased 

estimate of the gradient. 

- Step 4. Calculate the estimates of the gradient of the OF according to (13). 

- Step 5. Compute 
1i

ρ  in terms of the update law (15). 

Step 0 is done only once. Steps 1 to 5 are repeated iteratively. Step 0 requires an 

initial set of parameters that stabilise the state feedback CS to be obtained here by 

LQR. In the case of Single Input-Single Output (SISO) systems, we can use the 

Ziegler-Nichols tuning [33] or other techniques like the Virtual Reference 

Feedback Tuning [34], [35] in order to get these parameters. 

There exists a difference between the deterministic case and the stochastic case in 

terms of the objective function and of the objectives that are targeted. Specifically, 

IFT is developed as an experimental-based technique in which the noise enters the 

CS and therefore the objective function also contains a factor that depends on the 

noise; therefore the minimization of the energy transfer between the noise and the 

state variables is also attempted, in addition to the minimization of the state 

control error and of the control signal energy that are objectives specific to the 

LQR deterministic problem. This aspect is illustrated in Appendix 1. 

4 Case Study 

The case study is a second-order positioning CS for a modular DC servo system 

with an integral component. The process is characterized by the single input 

discrete-time LTI state-space model defined in (4) with the matrices 

2 ,
3993.7

1867.0
 ,

9471.00

0487.01
ICBA 

















 ,               (23) 

and with the angular position and the angular speed as state variables. The 

experimental setup is built around the INTECO DC servo system laboratory 

equipment. The control signal u for the accepted laboratory equipment is the 

PWM duty-cycle constrained to 11  u . The actuator exhibits a 15.0  

width insensitivity zone applied to u and compensated by an inverse nonlinearity. 
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The simplified model (23) was obtained by the parameter identification of the 

first-principle model of the equipment resulting in the simplified process transfer 

function (considering u as the input and the angular position as the output) 

)]1(/[)( sTsksP P  ,                 (24) 

where 
Pk  is the process gain and 

T  is the small time constant. The values of the 

process parameters were obtained as 88.139Pk  and s 92.0T . Using the 

notation Ts for the sampling period, the sampling period of s 05.0sT  was set. 

The detailed mathematical model of the process is time variant due to the 

interchanging modules (inertial load, encoder and eventually backlash). The re-

identification is not used in our approach. An experimental scenario is presented 

as follows to illustrate the benefits of the IFT-based approach over the classical 

LQR-based approach. 

The weights Q and λ in the infinite horizon quadratic performance index defined 

in (5) are 

400 , 
2.00

02.0









Q .                 (25) 

The results are presented for a step angular position reference input of 40 rad and 

zero angular speed reference input, i.e., 
T]040[r . A first order low-pass 

digital filter with a cut-off frequency of 20 rad/s is used in the experiments to 

reduce the errors and the noise that occurs during the measurement of the angular 

speed. This filter will change the process model, but IFT is independent with this 

regard. This choice also supports the idea that the tuning can be carried out 

whenever the process model changes in time, without the need of identification 

and optimal redesign via LQR. 

The weights (25) do not cause the saturation of the actuator. Thus the undesired 

behaviour due to the nonlinearities is avoided. This undesired behaviour usually 

occurs in the LQR-based approach where the nonlinear actuator is not included in 

the process model. 

For benchmarking purposes the control system performance indices that are used 

are the OF, the control signal energy defined as 





N

k

u kuE
0

2 )( ,                  (26) 

the 10% to 90% rise time of the position response (
rt ), and the maximum speed 

(
max ). The IFT-based approach is next used to further reduce the OF, taking 

advantage of the experiments conducted on the real-world experimental setup. 
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In order to provide a relevant improvement, we start with a process model that is 

very different from the identified model. This is the same as assuming that the 

process model is time variant or that the identification is not accurate. The starting 

model for the LQR design uses the process parameters 180Pk  and 

s 2.1T  in the transfer function (24). For the weights (25), the state feedback 

gain matrix is 

]0.0213680.020496[)( 211_ LQR

T
ρ ,               (27) 

The gain matrix 
1_)( LQR

T
ρ  is further tuned using our IFT algorithm. The initial 

step size in the IFT algorithm employed to minimize the OF (9) is set to the initial 

value 
80 102  , the values of the consequent step sizes are set in terms of 

(17), and 
2IR i

 is used. 

The reduction of the value of the OF is emphasized to illustrate that our IFT 

algorithm ensures the performance improvement of the state feedback CS. The 

following expression of the gain matrix is obtained after 15 iterations: 

]0.0173550.018900[)( 212_ LQR

T
ρ .               (28) 

The evolution of the OF with respect to the iteration number (i.e., during the 

tuning) is presented in Figure 3. The evolutions of the controller parameters (i.e., 

the elements of the gain matrix) versus the iteration number are presented in 

Figure 4. The time responses of the CS before and after the application of the IFT 

algorithm are presented in Figure 5. 

Figure 4 illustrates that the OF is affected by random disturbances when it is 

evaluated on the real-world process. The values of the OF for the gain matrices 

defined in (27) and (28) are 89.38211_ LQRJ  and 10.37722_ LQRJ , 

respectively. The following performance indices were obtained: 

- for the initial CS response (i.e., before IFT): 5482.2uE , s 94.2rt , 

rad/s 0847.27max  , 

- for the final CS response (i.e., after IFT): 4654.2uE , s 53.2rt , 

rad/s 9519.27max  . 

A discussion on these results follows. The relatively large number of iterations 

shown in this case indicates that the slow convergence is due to the fact that the 

steepest descent direction is used and due to the fact that we are close to the true 

local minimum, and therefore only modest but still quantifiable improvements are 

seen in the figures. In practical situations it suffices to do several experiments in 

order to improve the performance in terms of the OF. 
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Figure 3 

The evolution of the objective function versus the iteration number 

 

Figure 4 

The evolution of the controller parameters versus the iteration number 

 

Figure 5 

Control system responses of the CS before IFT and after IFT 
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The minimization of J is dedicated to reducing the energy transfer from the 

process noise to the state variables. In conclusion, nonzero reference inputs are 

reflected by targeting three objectives: the minimization of the tracking error 

energy, the minimization of the control effort, and the noise rejection problem 

[13]. The improvements via IFT shown in the previous section ensure the 

reduction of the OF value and of its variance, due to the lower sensitivity to noise. 

This idea is also backed up by Appendix 1. 

The time responses of the experimental results shown are not very different, and 

this shows the robustness of state feedback CS with respect to the controller and 

process parametric variations. However, the solution is an evident improvement of 

the LQR design, and when the noise contribution in the OF is small, it is expected 

that the tuning procedure gets near the optimal gain matrix, which results in an 

optimal state feedback CS with robustness properties. When the noise contribution 

is important, the robustness properties of the optimal state feedback CS still hold, 

as suggested by the simulation scenarios with included process noise. 

The weights in the optimisation problems were set so as to ensure the linear 

operation of the process and of the actuator, viz., without entering saturation. The 

experimental results illustrate that the steady-state error of the position response is 

improved in spite of the process nonlinearities. 

IFT requires 1+n real-time experiments per iteration, n of them being successive 

gradient computation experiments. This number cannot be reduced using ideas 

similar to those presented in [36]-[38] because the number of gain matrix 

parameters is equal to the product between the numbers of process inputs and 

outputs. 

Conclusions 

This paper has presented an extension of the IFT approach to improve the 

performance of state feedback CSs where the performance specifications aim the 

minimization of OFs expressed as quadratic performance indices. 

Our general IFT approach provides an efficient way to deal with some of the 

specific problems of ill-defined processes when the strongly model-dependent 

LQR design gives solutions that are far away from the optimal solution. In such 

cases, when the LQR approach cannot anymore allow finding the minimum of the 

OF, the IFT approach can be applied to further reduce the OF. The experimental 

results presented in Section 4 show that the IFT approach, which allows an 

estimation the OF gradients on the basis of sensitivity functions and of real-time 

measurements during the CS operation, can successfully be used. 

A limitation of our IFT approach is that it actually ensures the strong improvement 

of the CS performance and the strong reduction of the OF only with respect to the 

considered particular reference input. Modifications of the reference input will 

yield different results with different dynamic characteristics. Our IFT approach 

does not use state estimators, being developed for a specific situation where all 
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states are measured. However, the introduction of state estimators in future 

research is not problematic because the estimator gain can also be included in the 

IFT algorithm. 

Future research will deal with the extension of the proposed IFT approach to 

MIMO control systems in mechatronics applications and to the tuning of state 

feedback fuzzy control systems. Further study of the convergence of the IFT 

algorithms is needed for all these nonlinear applications. Similar model-free 

tuning methods will be implemented including extremum seeking with emphasis 

on the direct application to the tuning of fuzzy controllers [39]-[42]. 
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Appendix 1. Connection between LQR and IFT objective functions 

This Appendix illustrates the connection between the LQR OF which drives the 

analytical solutions of the optimisation problem, and the IFT OF which is 

subjected to practical evaluations in our data-based algorithm. We assume two 
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cases for the OF, defined in the deterministic case and in the stochastic case 

related to the state feedback CS. The dependence on the parameter vector ρ  is 

omitted for the sake of simplicity. Our development follows a similar development 

to that presented in [43], and the two cases, a) and b), are presented as follows. 

a) The deterministic case. We assume that the following operational relationships 

are valid: 
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where 
nnq  RρP xr ),( 1

 
 is the process pulse transfer matrix operator from the 

reference input vector r to the state vector x and 
11

 ),(   n

u q RρPr
 is the 

process pulse transfer matrix operator from r to the control signal u. The 

dependence on ρ  is assumed but not explicitly written as follows in order to 

simplify notation. 

The infinite horizon OF specific to the formulation of the LQR problem 

corresponding to this case is 
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b) The stochastic case. The following relations hold: 
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The reference input vector and the process noise are assumed to be quasi-

stationary and uncorrelated, i.e., 

0wr )}()({ kkE T
.                   (32) 

The expression of the OF used in IFT in this case is 
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The second, the third and the sixth terms in (34) are zero due to the uncorrelation 

between r and w. Therefore the following expression of )(ρJ  is obtained: 
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The term )(ρwJ  is dedicated to the minimization of the energy transfer from w  

to x  and to u . Inherently, in experiment-based tuning via IFT, this objective is 

also targeted in addition to the objectives to minimize the state control error 

energy (set-point tracking) and 
uE . If 0r   and 0  are chosen, the OF 

)(ρJ  enables the minimization of the energy transfer from the process noise to 

the state variables, resulting in a non-robust structure. 


