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Abstract: In the fields of forestry and horticulture, it is necessary to have forecasts about
the growth of trees. This process is affected by a lot of external factors like weather, light
conditions, other objects, etc. There are several already existing methods for this purpose,
but these can give only rough estimations. This paper presents a novel solution, based on the
simulation of the growth of the tree. During this process, the application takes into account
the environment of the tree and the properties of the species, which parameters are all eas-
ily configurable. The presented application can simulate not just one, but a group of trees
parallel, estimating their effects to each other (shadows, etc.). The result of the simulation
is a three dimensional model of the tree(s) at any time of the growth process. The distortion
effects of these external factors are well visible on this model, giving a realistic estimation
about the integration of the tree(s) into the given environment. The simulation has high com-
putational demand; therefore, the most computationally intensive steps of the simulation are
implemented on graphics accelerators using the CUDA framework.
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1 Introduction
In practice, experts of the fields of forestry and horticulture would like to see the
state of a given tree in the next decades. This should be essential for gardeners to
design the estimated landscape of an area and for foresters to maximise the profit
from the trees. The simulation of tree growth based on the environmental effects
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can help giving answers for further scientific questions related to climate change,
air pollution [1], education [2], and other fields [3].

But the growth of trees is a very complex process because it is affected by several
external factors (weather, light conditions, other objects, etc.). Although, every tree
can be distinguished by its type traits, but in reality, these can be heavily altered
by external forces. After a given tree is rooted in a given place, it has to evolve to
withstand a wide range of environmental effects. The main guiding principle of the
authors is that to simulate a natural phenomena, the best way is to follow the steps
of nature. Nowadays, there are some popular algorithms following this approach,
and the method presented in this paper is also based on this principle. It simulates
the growth of a given tree from the first day. During this, it takes into account the
properties of the given species and the surrounding environment [4].

In some cases, it is not enough to reflect on the static surrounding factors, because
it should be also important to take into account the neighbouring trees. In the case
of planting multiple trees at once, taking into consideration their effects on each
other are also necessary. The presented algorithm is also suitable for this kind of
simulations, the final result shows a good estimation of the future shape of all trees.

The main mechanism of the presented model consists of two separate steps:

• The determination of the shape of the tree without any environmental effect.

• Deformation of this shape based on the environmental factors.

It is necessary to repeat this process iteratively every year and recursively for every
branch of the tree. After the basic growth step (given by the species properties), the
deforming modifiers are applied one by one from a list which can be easily updated
or expanded.

The presented model contains the following potential factors to configure the tree
growing:

• Type traits

• Heliotropism

• Collisions

• (Self) shades

The main goal of this research is the development of an easily configurable model
which creates visualisation of trees in a given environment. That can help profes-
sionals and hobbyists to plan their garden or even to choose the correct tree species
for populating a new forest.

The rest of this paper is structured as follows: Section 2 contains a state-of-the-art
overview of the already existing theoretical methods and implemented systems. The
next section shows the methodology of how to simulate the growth of a given tree.
Section 4 presents the experimental validity and runtime test results; and finally, the
last section contains the conclusions, limitations and further plans.
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2 Related Work
The simulated growth of trees is a main task in the field of systems biology and
mathematical biology to reproduce plant morphology with computer simulations.
There are several related attempts to create realistic tree models [5, 6, 7]. In the
past, these were only ray-traced renders; but later, simulations also appear for this
purpose. A significant difference should be made between the main approaches of
the latter alternatives [8]:

• Developmental models start with a single root element and produce further
elements by adding and dividing already existing items of the model. These
are very accurate and well usable models with high computational demand.
The real-time usage of these is not a real alternative.

• Non-developmental methods are based on prefabricated models. After the
insertion of these, the model undergoes a series of necessary modifications
and adaptations. This approach has the advantage of very fast response time,
but the result is usually less realistic. Nowadays, it is common to use non-
developmental models to simulate plants in animations and computer games.

The main objective of this paper is the generate as realistic models as possible (the
runtime is less important); therefore, the non-development approach is not accept-
able. The growth of a plant is a complex, continuous process altered by several
external factors. There are already existing computer simulation based methods to
replicate this behaviour with various models. The most commonly used one is the
Lindenmayer System model (L-Systems) [9].

The earlier variants of this model handled only the branching structure of the trees
in a non-developmental way [10, 11]. The newer variants use several environmental
factors to modify this process and create highly detailed developmental models [12]
[13].

Based on its recursive approach, it is well applicable for simulation of self-organising
objects. The process is based on a simple starting state and a rule set like (1).

S{A,B}
α{A}→ {B,B}
β{B}→ {A}

(1)

After that, the algorithm executes recursive steps applying the given rules in all
iterations. Based on this model, it is possible to generate realistic plants.

The original L-Systems implementation contains the following modification factors:

• Effect of gravitation

• Heliotropism

• Geotropism
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• Longitudinal and transverse growth

• Collisions

• Rotation of branches

• Angle of branches

Our presented method uses some of the recursive properties of the L-Systems, but
makes the model applicable for simulating higher level plants.

The “Structural simulation of tree growth and response” research project [14] had
very similar objectives. It presented a mathematical model taking into account the
energy consumption of the growth, the weight of branches, and the energy input
given by photosynthesis. The developed system gave a good overall estimation of
the shape of the tree, but it was not able to handle environmental effects.

It is also worth mentioning the work of Jason Weber and Joseph Penn [5]. Their
approach was not simulation based. The shape of the generated tree was described
by a simple rule set (shape of the tree, number of branches, subdivision of branches,
angle of branches, etc.). According to these rules, it was able to build a tree body
made of pyramids and having leaves as surface items. This method mainly focused
on visualisation; therefore, it did not take into consideration any environmental ef-
fects.

From the visualisation point of view, it is also worth mentioning the already ex-
isting advanced modelling and rendering methods, like SpeedTree [15]. These are
not simulations, but modelling tools. The end user has to set all necessary proper-
ties, and the application can generate a model according to these. Trees generated
by this approach are the key components of 3D animations, computer games, and
augmented reality applications [16].

Applications from the field of forestry have a very different approach than above.
These are detailed simulations supporting the estimation of cost/benefit of tree pro-
duction. There are very accurate and take into consideration all available environ-
mental factors, but does not have any graphical output.

3 Methodology
3.1 Type Rules
To simulate the most defining traits of a tree, information should be collected from
the field of Dendrology. The problem is that this field can help identify trees but not
to create them. Therefore, as a preliminary step, we had to find the traits defining
the look of a tree. The following properties have been identified:

• Longitudinal growth

• Transverse growth

• Branching angle

• Branching rotation
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• Branching type which can be “whorled”, “opposite”, “alternate”, and “spiral”

These properties are not constant in the whole lifetime of a tree. It is necessary to
differentiate several life stages as follows:

• 0-1 years: seedling

• 1-5 years: sapling

• 5-15 years: young tree

• 15-70 years: mature tree

• 70-150 years: seed-growing tree

The set of used rules reflects on this by having different parameter values for every
life stage. The life stages may vary with different tree types.

As an additional option, different branch levels can also have different parameter
values. In this context, branch level refers to the distance from the root. The algo-
rithm is able to handle an arbitrary number of levels, but in practice, it is enough to
use three of them:

• 1st level: the trunk of the tree

• 2nd level: branches grown from directly the trunk

• 3rd level: further branches

It is possible to set different parameter values for each branch level.

3.2 Light Detection
Heliotropism is the most decisive modifier because light is the most important re-
source for every species. Trees can observe light in multiple ways. The simulation
uses virtual sensors located in the branch tip buds detecting the direction and amount
of light. This information significantly influences the grow direction of this branch.
Sensors use Monte Carlo ray-tracing to gain the requested information.

Ray-tracing algorithms are heavily used in three-dimensional graphics. These are
used for rendering realistic images by tracing the paths of light as pixels in an image
plane. These are capable of producing realistic results, but at the cost of very great
computational. Basically, ray-tracing starts beams from one of the pixels of the
image (camera) and tries to follow its path. It is able to simulate several optical
effects, such as reflection, refraction, scattering, and dispersion. Based on this path,
it is possible to determine the colour and intensity of the given pixel. The presented
implementation is different from this basic process as it doesn’t produce a flat image,
but explores the directions where light beams arrive at the virtual light sensors.

The special Monte Carlo ray-tracing [17] algorithm is used to simulate this be-
haviour of trees. In general, Monte Carlo algorithms are randomised procedures
to estimate the value of very time-consuming computations. These algorithms are
based on repeated randomised sampling, and they produce an output which might be
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incorrect with a certain probability. This probability can be reduced using a higher
number of random samples.

As an optimisation step, the presented light detection algorithm first looks for a
direct line to any light source. If any of these exists, the dominant direction of light
is from this point. If there are no such direct lines, then it starts the path tracing.
During this, a beam of ray is started into a random direction. If it hits a triangle (all
objects in the model space are described by the triangles forming their surface) it
continues to a direction according to the rules of reflection, and repeats this process
for a given number of times or until it reaches a light source. After that, it is able
to start further beams, and at the end of this process, it results in an array of vectors
representing the directions of potential light sources.

Based on this array, the light source with maximum energy is selected (the dominant
light source direction). This will modify the direction of the branch growth leading
to that light source.

3.3 Collision Detection
The growth of a tree is significantly influenced by the objects in its environment. It is
obvious that a branch cannot move across or into any solid obstacles. The simulation
is executed in a three-dimensional model space; therefore, it is possible to create
and place any additional objects into this. There are no limits to the shape and size
of these objects. Furthermore, the neighbouring trees can also be considered as
obstacles too.

The collision detection is another part of the iterative growing process. It is done
for every branch after the altered growing direction and length is determined. The
potential new branch interval is checked against every triangle in its neighbourhood.
If there are no collisions, the potential branch becomes real. If it collides with any
of the triangles, it is necessary to alter the direction of growth.

This new direction is based on the projection of the growth vector to the plane of
the triangle. This projection gives a new growth direction if it does not cause further
collisions. This method has some limitations, for example, if the growth vector is
perpendicular to the surface of the triangle then the projection is a point which stops
the growing process of the given branch.

3.4 Pruning
It is possible to dynamically modify the structure of the tree. Selected branches and
their sub-branches can be removed from the model. This lets more light for other
branches, modifying their behaviour. Using this technique, it is possible to give
more realistic results.

There are also some automatic pruning mechanisms. In the case of some species,
branches without enough light become inactive and withered. These are usually the
lower/inner branches of a tree, especially in a multi-tree environment. It is possible
to automatically remove these parts.

– 226 –



Acta Polytechnica Hungarica Vol. 17, No. 4, 2020

3.5 Simulating Multiple Trees
It is possible to simulate not just one but multiple trees parallel. These are simulated
year by year, sequentially one after the another. This may cause some problems
with the trees effecting to each other in an unnatural way. For example, trees at the
beginning of the iteration can grow over the others blocking more light from them.
The prevention of this phenomena is that shades are calculated and updated at the
start of every iteration.

The partially separated simulations of trees have several benefits. There are no limits
to the number, type and age of the trees in the same model space. It is possible to
plant different species at different times and run the simulation. The result will show
a good estimation of the whole group.

3.6 Acceleration with GPUs
3.6.1 GPU Acceleration of Ray-Tracing in General

The well-known disadvantage of ray-tracing methods is the very high computational
demand compared to other three-dimensional rendering techniques [18]. Tracking
the light beams from their source to the final destination needs several mathematical
calculations like reflection angles, collision projections, etc. This is the reason, why
the accepted view is that this method is not applicable for real-time purposes.

Using the Monte Carlo method makes it possible to significantly decrease the num-
ber of these tracings, but it is also worth considering that more rays usually gives
more accurate results. This means thousands of rays from one sensor. In the first
years, this is not an issue, but as the tree becomes older, the number of branches in-
creases exponentially. On an average CPU, it becomes days to simulate the changes
for further one-year iterations, which is unacceptable.

Fortunately, ray-tracing is a typical embarrassingly parallel algorithm. Thanks to
this, there are several parallel implementations and it is obvious that it is suitable for
data-parallel implementations. Because all pixels of the target image are indepen-
dent of each other, it is possible to fully parallelise the process. GPU implementa-
tions are usually based on the idea that it is possible to assign each pixel (camera ray)
to one thread of the GPU. This means thousands or millions of threads, but this is
what the GPU for [19, 20], the GPU based implementations can achieve significant
speedup over the serialised version.

3.6.2 GPU Acceleration of Tree Growth Simulation

The novel GPU accelerated tracing method works mostly the same as the presented
regular implementation. The major difference is in the pluralisation phase. Ray-
tracing algorithms are easy to parallelise because these are usually completely data
parallel. This means that each photon paths are independently tracked from each
other and the branch traces are also separate from each other. This helps the imple-
mentation, because it is possible to handle the branches in CUDA blocks where the
paths are handled by independent threads within those blocks.
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The other difference is that the CPU version calculates every branch sequentially,
but the GPU version calculates these at once at the beginning of the iteration. This
needs the following consecutive steps:

1. Before the calculation, all data required for the ray-tracing process is copied
to the device from the host.

2. GPU kernels run and calculate the results.

3. The results should be copied back to the host from the GPU.

This data transfer is very time-consuming because it uses the standard PCI-e bus.
It is a hardware limitation, therefore there is no way to significantly decrease the
requested time.

This causes the behaviour presented in the evaluation part that in the first few years
of the simulation, the GPU version is slower than the CPU because the amount of
data copied is large compared to the number of calculations (where the GPU can
offset this disadvantage).

4 Evaluation
4.1 Validation
4.1.1 Validation of Technical Sub-steps

It is always hard to evaluate and validate the results of a nature-inspired simulation,
because there are no gold standards to compare with. Because of the several ran-
domised factors, it is also not possible to give an exact expected state from a given
initial state (environmental and growth parameters).

The best thing to to do is checking the validity of the presented technical sub-steps
and do visual examination on the simulation results compared to similar real-world
examples.

Fig. 1 shows the result of the validation of the growth sub-step. All presented sub-
steps are validated in a similar way (not detailed in this paper).

Figure 1
Validation of growing in the first 3 years.
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4.1.2 Basic Tree without any Environmental Effects

Fig. 2 shows the result of a simulation of a basic tree without any environmental ef-
fects. The length and number of branches conform the given simulation parameters.
As visible, it has the expected regular and symmetrical shape. It is also possible to

Figure 2
Tree without any environmental effects.

display the state of the tree at the end of every simulation year (Fig. 3).

Figure 3
8 years long simulation without environmental effects.

4.1.3 Light Detection

Adding some light sources to the model makes it possible to validate the effect of
light tracking. Fig. 4 shows a tree grown with an external light source (from the
upper left corner of the image). As expected, the tree is blended toward the light
source.

4.1.4 Collision Detection

To validate the collision detector, it is possible to place an additional obstacle object
into the model space. Fig. 5 shows some examples for simulations of trees grown
near one or more external object(s). As visible, all trees were growing straight
upwards in the first years (there were no external light sources to modify this be-
haviour). After that, some of their branches could not grow to the desired direction.
According to the expectations, they had to find another direction to grow after the
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Figure 4
Tree with light effect.

collision. Overcoming the obstacles, they continued the growing process straight
upwards.

4.1.5 Complex Examples

To validate the cooperation of modifiers, Fig. 6 shows a more complex example. In
the first few years, the tree cannot see any direct light source, therefore it started
growing towards the left inner side of the box, where some light reflection comes.
But when is becomes taller, it turns towards the direction of the light source. As
visible, it took care about the collisions and found the hole in the top of the box.

To summarise the effects of these modifiers, Fig. 7a shows the result of a 5 year long
simulation. The parameters of teak trees were used. To help the visual validation,
Fig. 7b presents a real-world 5 years old teak tree. As expected, the main visual
attributes of these are very similar.

As a final test, Fig. 8 shows the result of a simulation on multiple trees. The rear
one was deployed some years before the others, therefore it is larger.

4.2 Runtime
As mentioned, the tree growing simulation has very high computational demand.
The most time-consuming part of the process is the ray-tracing step, which deter-
mines the direction and strength of dominant light in a given point. An efficient
GPU based ray-tracing algorithm has been designed and implemented to speed-up
this step.

The following hardware configurations were used for benchmarking:

• CPU configuration
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(a)
Branch collision.

(b)
Trunk collision.

(c)
Upper view of collision.

(d)
Complex use case for multiple obstacles.

Figure 5
Validation of the collision detector.

– CPU: Intel Core i5-2500K

– Number of cores: 4

– RAM: 8GB DDR3

– TDP: 95W

• GPU configuration

– GPU: NVIDIA GeForce GTX 1070

– Number of CUDA cores: 1920

– RAM: 8GB DDR5

– MPC: 150W

Fig. 9 shows the runtime of the CPU and the GPU implementation of the ray-tracing
algorithm for a one year simulation period. In the first few years, the tree is not
enough complex to fully utilise all the available cores of the GPU. As a conse-
quence, the execution time of the CPU implementation is smaller in the case of
small (young) trees. But it is also visible, that the runtime increases faster in the
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Figure 6
A complex example for light and collision detection.

case of the CPU. The measured runtimes are similar for 6 year old trees, and after
that, the GPU clearly outperforms the CPU.
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(a)
Real 5 year old teak tree.

(b)
Simulated 5 year old teak tree.

Figure 7
Comparison of simulated and real tree.
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Figure 8
Simulating the growth of multiple trees.

The results of Fig. 10 are more interesting. These show the accumulated runtimes
of the previous years, which are more important from the practical point of view.
Obviously, the runtime of the CPU implementation is smaller for small trees. This
changes after 7 years, when the overall runtime of the GPU becomes better. The
runtime of both algorithms is exponential to the age of the tree (according to the
exponential growth of branch count), but the runtime of the CPU implementation
rises more steeply.

It was not necessary to compare the accuracy of the CPU and the GPU solution,
because the underlying algorithms are the same. Therefore, the trees generated by
the CPU and GPU are exactly the same. These share the same results regarding the
validation steps.

In practice, only long-term simulations give valuable results. As a consequence, it
is worth using the GPU implementation. It may worth considering to implement a
hybrid approach which uses the CPU in the case of small trees and switch to the
GPU for larger ones.

5 Conclusions
This paper presents a novel nature-inspired tree growth simulation algorithm to es-
timate the future states (shape, size, etc.) of a given tree according to the environ-
mental parameters (light, obstacles, neighbouring trees, etc.), and its species char-
acteristics (annual number of new branches; angle, length of branches, etc.).

It presents a novel method of simulating the growth of plants which is not entirely
based on L-Systems. The main difference is that it takes a less direct approach as
rule based generation. The environmental effects are not part of the growth rule
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system but a separate subsystem which modifies the result of the growth model.
This leads to a dynamically and easily extendable model.

The validation section shows that this novel method can efficiently estimate the
future characteristics of a given tree. It was able to give not just quantitative infor-
mation about the tree, but also a complete three-dimensional model. It is possible
to preview the states during the simulation at the end of each year.

Profiling showed that the most time-consuming part of the algorithm is the ray-
tracing sub-process. To speed-up this part, a novel GPU based ray tracking algo-
rithm was developed and implemented using the CUDA framework. Benchmarks
show that this was slower than the CPU implementation in the case of small (young)
trees, but it was significantly faster in the case of large (old) ones.

Unlike the already existing implementations, the presented system can simulate not
just one but multiple trees at once (where each of these can be different species).
Benchmarks show that the lack of hardware resources should be the main limit for
this kind of simulations.

Thanks to the modular design of the application, the set of deforming factors of the
simulation can be easily extended. As further plans, authors would like to imple-
ment the following modifiers:

• Regionalism by altitude

• Water consumption and need

• Soil quality

• Geotropism
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