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Abstract: The article firstly investigates a discrete numerical model of finite interaction 

between successive microstructural bond failures and remaining intact internal bonds in 

materials. Secondly, it reveals the general linear finite continuous cause and effect 

interaction concept. The interaction model is examined numerically, experimentally and 

analytically on an illustrative case of a parallel system of bonds. The general concept is 

applied to the macroscopic stress-strain interaction model of material plasticity. Examples 

of metallic materials are elaborated on reported theoretical and experimental strain data. 
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1 Introduction 

This research is motivated by the stance that the curve fitting methods based on 

experimental data about plasticity in engineering of materials often do not have 

appropriate physical foundation and in some cases are not accurate enough for 

practical applications. The methods of thermodynamics, continuum mechanics 

and dislocation physics in materials sciences provide theoretical solutions for 

complicated problems in engineering plasticity. The article advocates that a 

comprehensive, more accurate and straightforward definition of non-linear 

material mechanical properties of plasticity might be of interest in practice, 

particularly for determination of the ultimate strength of engineering structures. 

The plasticity model in this article focuses on internal failures of microstructural 

bonds between discrete material particles rather than on crystallographic defects in 

shape regularities resulting in dislocation of particles. The article investigates the 

suitability of an empirical Cause-and-Effect Interaction concept (CEI) for 

definition of a Stress-and-Strain Interaction (SSI) macrostructural model of 

plasticity definable by propensity to and intensity of interaction. The applications 

of the numerical procedure of the analytic model of the SSI concept are illustrated 

by reported examples of experimental results of plasticity testings. 
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2 The Linear CEI Concept of Plasticity 

The formulations of microstructural processes and applications of 

thermodynamics in material sciences, e.g. [1], and macroscopic continuum 

mechanics are in wide use for modelling of plasticity in engineering problems, e.g. 

[2] [3] [4] [5] [6] [7] [8]. Multilevel theories of irrecoverable deformations, where 

macro-strains are related to the processes occurring on the micro level of material, 

provide relatively simple stress-strain and strain-time formulae [9] [10] [11]. The 

rearrangements of the internal structures within which the particles are being 

collectively dislocated to new positions of internal equilibrium are frequently 

explicated in discrete dislocation physics as interactions, e.g. [12] [13] [14] [15] 

[16]. Simulation methods based on dislocation physics and using finite element 

analysis, e.g. [17] [18] [19], are important but time-consuming numerical tools. 

The linear CEI concept [20] [21] [22] in the article holds the internal failures of 

bonds among discrete particles in materials accountable for the defects on the 

microstructural level. The starting assumption in this model is that the 

macrostructural mechanical properties of materials under loading depend on great 

but finite total number CR of intact internal elastic bonds intrinsic to the basic 

material physical microstructure (Fig. 1). The primary effect E(C) induced by 

successive bond failures C is gradual reduction of strength until yielding of 

overloaded elastic bonds. The primary effect E (weakening, yielding, plasticity) 

under loading is linearly related to the cause C (elastic bond failures) as shown: 

( )E C p C          (1) 

Simultaneously the remaining number of intact elastic bonds (CR-C) preserves the 

residual load-carrying capacity (strength), which is the left-over resistance to 

deformation after C successive bond failures. From the initial assumption of 

linearity between the primal cause and effect (1), it follows that the durability 

R(C) also has to be linearly related to the remaining number of intact bonds: 

( ) ( )RR C r C C          (2) 

The hypothesis of the study is that the weakening E(C) is not just a simple cause-

and-effect relation CE or EC as in (1 and 2) with respect to the cause C but 

rather a more complex cause-and-effect interaction CE. The weakening E(C) 

with respect to the durability R(C) is the consequence of the redistribution of 

internal loads between the numbers of failed C and intact (CR-C) bonds (Table 1). 

The interaction rate expresses how the weakening E(C) (1) reduces the remaining 

durability R(C) (2). That in turn interactively accelerates the primary weakening 

E(C) by the amount of E(I) induced by a secondary cause I(C) due to interaction 

with the cause C (e.g. Fig. 2). Hence, the interaction rate is simply in proportion i 

to the ratio of numbers of failed C and intact (CR-C) bonds as shown next: 

 
( )

( )
( ) R

E C C
E I C i

R C C C
   



      (3) 
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The secondary weakening E(I) (3) by each successive failure of elastic bonds 

results in redistribution of load to remaining intact bonds, that is, the weakening of 

the elastic system of bonds until fracture. However, the overall secondary 

weakening E(I) by each successive failure of elastic bonds accumulates all the 

former effects induced by the interaction between the weakening E(C) and the 

durability of material R(C) that is expressed by the following summation: 

   
1

( ) ( )
RC

C

E I C E I C


        (4) 

The overall plasticity may be viewed as the consequence of the overall weakening 

E(C,I)=E(C)+E(I) resulting from the primary E(C) (1) and secondary E(I) (4) 

weakening (e.g. Table 1, Fig. 2). 

The two parameters p and i=p/r (1-4) represent the propensity to and the intensity 

of interaction between the weakening and the durability of material. The work 

done in weakening E(I) (4) (Fig. 1) is equivalent to the accumulated energy of 

interaction UE(I) attainable by integration of all successive secondary effects of 

failures of elastic bond commonly available from experiments, as shown below: 

   
1

( ) ( )
RC

C

U I C E I C


       (5) 

The exposed CEI concept (1-5) is not in contradiction with the rules in mechanics. 

 

Figure 1 

Internal elastic bond failures till fracture in parallel arrangement of bonds (CR=10) 
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Table 1 

CEI calculation for CR=10 initial intact internal bonds in material 

C E(C) CR-C Redistribution C/(CR-C) E(I) E(C,I) U(I) 

0 0 10 10/10=1+0/10 0,00 0,00 0.00 0.00 

1 1 9 10/9=1+1/9 0,11 0,11 1.11 0.11 

2 2 8 10/8=1+2/8 0,25 0,36 2.36 0.47 

3 3 7 10/7=1+3/7 0,43 0,79 3.79 1.26 

4 4 6 10/6=1+4/6 0,67 1,46 5.46 2.72 

5 5 5 10/5=1+5/5 1,00 2,46 7.46 5.18 

6 6 4 10/4=1+6/4 1,50 3,96 9.96 9.14 

7 7 3 10/3=1+7/3 2,33 16,2
9 

13.29 15.4
38 

8 8 2 10/2=1+8/2 4,00 10,3
9 

18.29 25.7
7 

9 9 1 10/1=1+9/1 9,00 19,3
9 

28.29 45.0
6 

10 10 0 10/0=1+10/0 ∞ ∞ ∞ ∞ 

3 Mathematical Formulation of the CEI Concept 

The direct application of infinitesimal calculus to the massive discrete systems of 

a great but finite number of micro-structural bonds decomposed into linear (1) and 

nonlinear (4) parts E(C,I)=E(C)+E(I) provides the following analytical 

formulation of the general CEI concept (1-5) [20] [21] [22] (Fig. 2) of continuous 

finite systems on the macroscopic level as shown: 

2

2 2

d ( , ) 1

d (1 )

E C I
i

C c
 


       (6) 

d ( , )

d 1

E C I c
p i

C c
  


       (7) 

0

( ) d

c

RE C p C C p c           (8) 

 
0

( ) d ln(1 )

c

R

R

C
E I i C i C c c

C C
       

     (9) 

  2 2

0

( ) ( )d / 2 (1 ) ln(1 )

c

RU I E I C i C c c c c                        (10) 
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The relation C(E) can be obtained from (9) by integration of the inverse derivative 

of (7), that is, the rate of change of the cause C with respect to the effect E as: 

 
d 1

1/ d ( , ) / d
d ( , ) ( )

C c
E C I C

E C I p c i p


 

 
               (11) 

The interaction intensity parameter is attainable from the equivalence of the 

observable work W(I)=U(I) done on interactions and the interaction energy (10): 

  2 2( ) / / 2 (1 ) ln(1 )Ri W I C c c c c                       (12) 

In the mathematical formulation of the CEI concept (6-11) c=C/CR and e=E/CR are 

the dimensionless cause C and effect E relative to final value CR. 
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Figure 2 

Numeric and analytical example of the CEI concept for CR=10 bonds (Table 1) 
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In terms of the exposed CEI concept, the strain hardening in polycrystalline 

materials under excessive mechanical loadings may be viewed as the consequence 

of overloading of remaining intact bonds after some bonds have failed. The 

resulting load redistribution increases the internal stresses in microstructural grain 

boundaries that intensify the massive propagation of dislocations in material 

followed by observable macroscopic permanent deformations. 

4 Experimental Investigation of the CEI Concept 

The following experiments physically reproduce the CEI concept for CR=10 bonds 

simulated by ten elastic rubber bands bonds in parallel arrangement under constant 

load (Fig. 1). Rubber band bonds of lengths =4 cm, =6 cm and =12 cm are 

investigated in five independent tests each (Fig. 3). 
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Figure 3 

Tension experiments on CR=10 elastic rubber band bonds and CEI analytical results 
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Each experiment consists of measurements of elongations Δ after random one-

by-one removal of rubber bands. The elongations are used to find the propensity p 

and intensity i parameters of the CEI model (6-11). The propensity to interaction p 

is obtained by measurement of the elongation for a single band under the same 

load. The interaction intensity i is determined from the work done in 

stretching/extending of the remaining rubber bands obtained by numerical 

integration of the elongation curves by using the trapezium rule. The experiments 

confirm the relation between the CEI model and the measured values (Fig. 3). 

5 The Appliance of the CEI Concept on the SSI 

Model 

The power rule was proposed earlier for fitting of non-linear    stress-strain 

curves: n

o pK      [23],  / /
n

E K E      [24], n

pK    [25] 

( )n

oK      [26] [27]. The exponential rule was suggested as well 

(1 )m

o sat e          [28]. The study considers the Stress-Strain Interaction 

(SSI) model of plasticity    apparent on the macrostructural level as the 

manifestation of the interactions between a massive number of failed and intact 

bonds on the microstructural level patterned after the CEI model (1-5). 

The application of the general CEI concept (6-11) to the total plastic strain 

( , ) ( ) ( )p I I         composed of the primary linear plastic strain ( )p   

induced by stress   and of the non-linear accumulation of secondary plastic 

strains ( )p I   resulting from the interactions of secondary stresses I  and 

plastic strains ( )p   provides the analytical terms for continuous material 

plasticity as follows: 

22

2

d ( , ) 1
''

d 1

p I

p R i
s

  
 




     

 
                (13) 

d ( , )
'

d 1

p I

p R

s
p i

s

  
 




     

 
                (14) 

  ( , ) ( ) ( ) ln(1 )p p I p p I R p s i s s                               (15) 

   2 2 2( , ) ( ) ( ) / 2 / 2 (1 ) ln(1 )RU E I U E U I p s i s s s s               (16) R 
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The interaction intensity can be obtained from the work W(I) done in 

experimentally defined plastic deformations and the theoretical energy in (16) as it 

is shown below: 

   2 2( ) / / 2 (1 ) ln(1 )Ri W I s s s s                      (17) 

where s=/R in (13-17) is the stress σ relative to its reference value σR. 

The parameters p=1/P and i=1/I in (13-17) represent the propensity to and the 

intensity of plasticity respectively, and can be derived from experimental data. 

Parameters P and I represent the propensity and intensity module of linear and 

non–linear plasticity induced by interaction between stresses and strains. The 

parameters can be obtained directly (17) or numerically using least squares or 

general nonlinear optimization methods. 

The SSI assumption for necking is that the rate of the decrease of stresses induced 

by changes of the sectional geometry due to interaction between the progressing 

strains  and the residual strain capacity R- can be defined analogously to (14): 

d ( , )
'

d 1

n p pI

n

e
M N

e

  



   


                (18) 

The application of the CEI concept    to the decrease in stresses 

( , ) ( ) ( )n p pI n p n pI         due to necking consisting of a primary linear 

decrease ( )n p   induced by strain p  and of non-linear accumulation of a 

secondary decrease ( )n pI   resulting from the changes in strains pI  due to 

interactions with ( )n p   provides the expression for necking as follows: 

  ( , ) ( ) ( ) ln(1 )n n p pI n p n pI R M e N e e                    (19) 

where e=/R in (18, 19) is the strain ε relative to its asymptotic reference value εR. 

The parameters m=1/M and 1/n N  represent the propensity to and the 

intensity of necking and can be derived from experimental data. Parameters M and 

N represent the propensity and intensity module of necking, respectively. 

6 Examples 

The first example demonstrates the appropriateness of the SSI model with respect 

to tension test results of mild shipbuilding steel (Fig. 4). The propensity to 

yielding p=1/P=1/4000=0.00025 MPa
-1

 is obtained by numerical derivation at the 

beginning of the yielding. The work done in plasticization is obtained by 
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numerical integration of the experimental σ- curve using the trapezium rule and 

amounts to U=24.2 MPa. The plasticization intensity (17) is obtained from the 

interaction energy (16) as i=1/I=1/4145=0.000241 MPa
-1

. The SSI expression for 

plasticity (15) (Fig. 4) in this example is: 

  ( , ) 150 0,00025 0,000267 ln(1 )p I s s s                        (19) 

Ramberg-Osgood power law parameters obtained by the least squares method, 

K=11300 and n=2,36, do not match the stress-strain curves over the whole range 

of the - curve (Fig. 4). The propensity modulus to necking is M=0 MPa. The 

necking intensity modulus is N=760. The SSI expression for necking in this 

example (Fig. 4) is: 

 ( , ) 474 0,15 760 ln(1 )n p pI e e                                     (20) 

The example of mild shipbuilding steel tested in the Laboratory of Experimental 

Mechanics of the Faculty of Mechanical Engineering and Naval Architecture 

shows that the stress-strain curves obtained by the SSI model based on the CEI 

concept fit the whole range of tests results (Fig. 4). 
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Figure 4 

The SSI model of mild shipbuilding steel 

The second example applies the SSI model on three types of unclassified cast 

irons (spheroidal, compacted and flake). The differences between the irons are in 

the influence of graphite morphology on stress-strain curves that harden with 

plastic deformation. The example confirms the smooth elastic-plastic transition 

typical for brittle materials [29] (Fig. 5). 



K. Ziha Stress-Strain Interaction Model of Plasticity 

 – 50 – 

0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5

S
tr

es
s 

   
(M

P
a)

Strain

Yielding of cast iron CI

P(MPa)     I(MPa) K        n

Spheroidal 2800      4680   103 4.50

Compacted 1700     4450 103 5.15

Flake              1000     3500 103 5.65

_ SSI yield curves

- - - RO curves

Experimental points

SSI yield rate curves

Propensity lines

 

Figure 5 

The SSI model of three types of cast irons 

The third example compares the SSI model results with the Crystal Plasticity 

Finite Element (CPFE) [30] numerical study of the polyslip behaviour of single 

aluminium crystals of different initial crystallographic orientations (111, 112, 123, 

100) under tensile loading and with experiments [31] and [32] (Fig. 6). 
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Figure 6 

CPFE simulated and experimentally observed orientation-dependence of the stress-strain of single 

aluminium crystals during tensile loading 

The fourth example compares the SSI model results with experimental results [33] 

and with the CPFE simulation [30] using the assumption of statistically stored 

dislocations (SSDs) and geometrically necessary dislocation (GND) density 

addition [34] for different grain diameters (14, 33 and 220 µm) (Fig. 7). 
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Figure 7 

Stress-strain curves for average grain diameters of 14, 33 and 220 µm 

The fifth example compares the SSI model results with experimental results 

obtained by laser extensometer type W-80 from Fiedler Optoelektronik of stress 

and strain measurements on aluminium specimens in time [35] (Fig. 8). 
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Figure 8 

Stress and strain measurements on aluminium specimens in time 

Conclusions 

The application of the cause-and-effect interaction concept to the time 

independent stress-and-strain interaction model demonstrates in this paper how the 

material yielding and plasticity could be viewed as asymptotical growth processes 

analytically definable as logarithmic function over the whole range of plasticity 

rather than unlimited power growths in some segments of the stress-strain curves. 
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The rapid asymptotic growth of the sensitivity to failures may explain sudden and 

uncertain breaks in continuity of a material’s behaviour under increasing loadings 

due to structural and environmental imperfections and defects in the material. The 

experience of this study indicates that some time-variant material mechanical 

properties such as creeping could be investigated in the future as asymptotically 

propagating processes following the cause-and-effect interaction concept. 

The presented model is governed by two unique properties of a material, which 

are the propensity to and the intensity of interactions, both evident from 

experiments. The initial propensity represents the starting microstructural 

constellation of internal bonds between the constituent particles of a material and 

their consistency normally reflects the initial state of the strength of the material. 

The interaction intensity parameter stands for the average of massive progressions 

of internal bond failures relatable to the overall material durability on the 

macroscopic level. The two interaction parameters are straightforwardly available 

from standard tensile testing of material mechanical properties. For tensile tests 

performed in time the interaction parameters can be calibrated in the time scale. 

The interaction model of material yielding elaborated in the article is not another 

curve-fitting method based on experimental data points but rather an 

implementation of a more general physical concept to investigate the mechanical 

properties of materials. This physical concept uses the equivalence of theoretical 

energy of micro-structural interactions between the failed and intact bonds to the 

experimentally observable stress-strain energy on macro-structural level. The 

general cause-and-effect interaction concept describes a part of trans-temporal 

continuum that relates the past and a future time separated by limitation of 

human’s ability of perceptions beyond the instant of observation. The results in 

this study reveal how the empirical cause-and-effect interaction concept could be a 

rational approach to an alternative understanding of the non-linear material stress-

and-strain interaction model, sufficiently simple and accurate for practical 

engineering problems of non-linear strains, strain hardening, yielding and 

plasticity. 
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