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Abstract: This paper is focused on the calculus of centrifugal moments for plane plates and 

bars, starting from the definition. General cases of plane plates and bars are studied. 

General formulae of calculus for centrifugal moments are established. These formulae are 

based on the positions of the mass centers of the rotation surfaces and rotation bodies 

generated by the bars and plates in rotation, respectively. 
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1 Introduction 

A number of problems on the dynamics of rigid bodies [1] are solved by the 

application of the theorem of the angular momentum, or d’Alembert’s principle 

[2], [3], [4], [5]. 

In order to solve the problems on the dynamics of plates and bars by using this 

theorem, it is necessary to find the centrifugal moments by a calculus, which can 

sometimes be difficult. In the technical literature [4], [5] this is done by 

integration, starting from the definition. 

In this paper, the authors propose two general formulae for the calculus of the 

centrifugal moments for plane plates and bars. The formulae proposed are original 

and are based on the positions of the mass centers of the rotation bodies and 

rotation surfaces generated by plates and bars in rotation, respectively. 
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2 Centrifugal Moments for Plates 

Let us consider a homogeneous plane plate with the mass m, area A and surface 

density . We relate the plate to a Cartesian reference system (Figure 1a) so that 

the plate will be situated in the xOz plane. The Ox  and Oz  axes do not cut the 

plate. The center of mass, C , has the coordinates   ,0,C . 

We isolate an element with infinite little area dxdzdA  , with the mass dm . 

Starting from the definition of the centrifugal moment, we can write: 
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where xdxdz2xdA2dV    is the volume of an infinite little element generated 

by the plate in rotation around the Oz  axis (Figure 1b). 

 

Figure 1 

Plane plate completely situated on the same part of the rotation axis ( Oz ): a) calculus of centrifugal 

moment, starting from definition; b) rotation body generated by plate in rotation 

If we consider that the mass center coordinate rcz of the rotation body generated by 

the plate rotating around the Oz  axis is given by the relation: 
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the relation (1) becomes: 
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Taking into account that the mass center coordinate   of the plane plate on the 

axis which is perpendicular on the rotation axis Oz  (used to generate the rotation 

body) is given by the relation: 
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the relation (3) becomes: 
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where Am  represents the mass of the plate. 

So, we obtain the following formula for the centrifugal moment: 

rcxz zmJ  ,   (6) 

or 

rcxz zAJ  .   (7) 

In conclusion, the centrifugal moment is equal to the product of the mass of the 

plate, the mass center coordinate of the rotation body generated by the plate, and 

the mass center coordinate of the plate on the axis which is perpendicular on the 

rotation axis. 

If we consider the second Guldin’s law, A2VOz   (where OzV  is the volume of 

the rotation body generated by the plate in rotation around the Oz  axis), the 

relation (7) becomes: 
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The geometric centrifugal moment will be: 

rcxz zAI  ,   (9) 
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Figure 2 

Plane plate rotated around two orthogonal axes: a) rotation bodies generated by the plate in rotation 

around two orthogonal axes; b) principal axes of inertia 

Let us consider a plate like in Figure 2a. With the axes as in the figure, when we 

rotate the plate around the Oz  axis, we obtain rcxz zAJ  , and when we rotate 

the plate around the Ox  axis, we obtain rcxz xAJ  . It follows that: 

rcrc xz   ,                                                                                                        (11) 

or 

rc

rc

z

x





.                                                                                                              (12) 

From the relation 
rc

rc

z

x





 and Figure 2a it results that the triangles OAC  and 

rzrxOCC  are similar. 

From the relation rcxz zmJ   it results that, if 0zrc  , then 0Jxz  . It follows 

that axis 1rzxC , which crosses the mass center of the rotation body generated by 

the plate, is a principal axis of inertia (Figure 2b). Also, from the relation 

rcxz xAJ   it results that axis 1rxzC  is a principal axis of inertia. 
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Figure 3 

The case when the rotation axis cuts the plane plate: a) plane plate cut by an axis; b) rotation bodies 

generated by plate in rotation around the axis that cuts the plate 

The relations (6), (7), (8), (9), (10) are available if the plate is fully situated on the 

same part of the rotation axis. In the case when the rotation axis cuts the plate 

(Figure 3a), the latter is split into two parts by areas 1A , 2A and mass center 

coordinates 1  and 2 , respectively (Figure 3b). By the rotation of these two 

parts, two rotation bodies are generated, with volumes Oz1V  and Oz2V , 

respectively. In this case the centrifugal moment is: 
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The geometric centrifugal moment will be: 
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Let us consider the example of a homogeneous plane plate OAB (Figure 4a), 

quarter of disk of radius R . The surface density of the material is  (kg/m
2
). With 

the axes as in the figure, we want to determinate the centrifugal moment xzJ . 

First, the “classic way” will be used, the calculus by integration. Let dA  be the 

area of an element of the plate, with the mass dm , which corresponds to an angle 

d  and a radius r  (Figure 4a). For this element we can write: 

 rdrddAdm  ; cosrx  ; sinry  . 
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Figure 4 

Determination of centrifugal moment for a plane plate quarter of disk: a) calculus of centrifugal 

moment for a plane plate quarter of disk, starting from definition; b) rotation body generated by plane 

plate in rotation 
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With the change of variable sinv  , dcosdv   it follows that: 
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The same result can be obtained quickly using the relation (8). During the rotation, 

the plate describes a semi sphere whose volume is 
3R

3

2
 (Figure 4b). The mass 

center of the semi sphere is on the axis of symmetry ( )Oz , R
8

3
zrc  . So, for the 

centrifugal moment it results that: 
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3 Centrifugal Moments for Bars 

This study is similar to the one for plates presented above. A homogeneous plane 

curve bar is considered, with the mass m, length l and density . We relate the bar 

to a Cartesian reference system (Figure 5a) so that the bar should be situated in the 

xOz plane. The Ox  and Oz  axes do not cut the bar. The center of mass C has the 

coordinates   ,0,C . 

 

Figure 5 

Determination of centrifugal moment for a plane bar: a) calculus of  centrifugal moment, starting from 

definition; b) rotation surface generated by bar in rotation 

We isolate an element with infinite little length   dxz1ds
2 , with the mass 

dm . Starting from the definition of the centrifugal moment, we can write: 
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where   dxz1x2xds2dA
2   is the area of an infinite little element 

generated by the bar in rotation around the Oz  axis (Figure 5b). 

Taking into account the fact that the mass center coordinate rcz  of the rotation 

body (surface) generated by the bar in rotation around the Oz  axis is given by the 

relation: 
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the relation (15) becomes: 
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Taking into consideration that the mass center coordinate   of the plane bar on 

the axis which is perpendicular on the rotation axis Oz  (used to generate the 

rotation surface) is given by the relation: 
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the relation (17) becomes: 
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where lm  represents the mass of the bar. 

So we obtain the following formula for the centrifugal moment: 

rcxz zmJ  ,                                                                                                        (20) 

or 

rcxz zlJ  .                                                                                                       (21) 

In conclusion, the centrifugal moment is equal to the product of the mass of the 

bar, the mass center coordinate of the rotation surface generated by the bar, and 

the mass center coordinate of the bar on the axis which is perpendicular on the 

rotation axis. 

Considering the first Guldin’s law, l2AOz   (where OzA  is the area of the 

rotation surface generated by the bar in rotation around the Oz  axis), the relation 

(21) becomes: 


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Let us consider the example of a homogeneous plane straight bar AB  (Figure 6a). 

We know the angle   between the bar and the Oz  axis. The linear density of the 

material is   (kg/m). With the axes as in the figure, we want to determinate the 

centrifugal moment xzJ . 
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Figure 6 

Determination of centrifugal moment for a plane straight bar: a) calculus of centrifugal moment for 

straight bar, starting from definition; b) rotation surface generated by straight bar in rotation 

First the “classic way” will be used, the calculus by integration. Let ds  be the 

length of an infinite little element of the bar, with the mass dm , which 

corresponds, on the axes, to the infinite little distances dx  and dz , respectively 

(Figure 6a). For this element we can write: 
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This result can be obtained faster by using the relation (20). During the rotation, 

the bar describes a cone surface whose centre of mass is situated on the ( Oz ) axis 

(Figure 6b), cosl
3

1
zrc  . The mass center coordinate of the bar is  sin

2

l
 . 

So, for the centrifugal moment it results that: 
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Conclusions 

In this paper the authors have proposed formulae for the calculus of the centrifugal 

moments for plane plates and bars, based on the positions of the centers of mass. 

To sum up, for a plane plate the centrifugal moment is equal to the product of the 

mass of the plate, the mass center coordinate of the rotation body generated by the 
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plate, and the mass center coordinate of the plate on the axis which is 

perpendicular on the rotation axis. Also, for a plane bar the centrifugal moment is 

equal to the product of the mass of the bar, the mass center coordinate of the 

rotation surface generated by the bar, and the mass center coordinate of the bar on 

the axis which is perpendicular on the rotation axis. 

Taking into consideration the fact that in the technical literature it is easy to find 

the positions of the mass centers for a lot of bodies (necessary in statical calculus), 

the formulae proposed here are accessible because they replace the integral 

calculus with arithmetical calculus. 
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