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Abstract: The matching of the visual representations of two objects is a very important task
in most computer vision applications. In special cases, when all objects look alike and only
small differences occur, the difficulty of the task increases. In this paper, a novel method for
matching low-quality images of rear-viewed vehicles is proposed, using multi-directional im-
age projection functions. For GPU-accelerated implementations, a data-parallel algorithm
is introduced. It is concluded, that the use of multiple directions with a small fixed resolution
number is the most efficient, and more precise than similar techniques with smaller projection
dimensions.
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1 Introduction

Closed-circuit television cameras — also known as surveillance cameras — are of-
ten applied to monitor traffic. Based on the use-cases, several applications of these
traffic cameras are known: congestion-detection and accident-detection systems are
popular, speed cameras, safety and various enforcement solutions as well [1]. Most
of these solutions require the device to be able to identify or track the vehicle, which
could be challenging depending on the brightness and weather conditions. Ad-
vanced devices have high resolution cameras with infrared LEDs for night vision
[2], also PTZ (pan-tilt-zoom) cameras can be used to track object movement.

On distant locations like public roads, highways, bridges and tunnels simple static
cameras are placed with non-overlapping fields of view. These camera-networks
are mostly used to measure traffic after crossroads, calculate the average speed of
vehicles based on the distance between the cameras and the time of observations

[3].
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Recognizing a vehicle by using the plate number is not always feasible. In tunnels,
where natural light is rare and colors are hard to detect, the usage of such high-
level devices is not cost-efficient, giving similar low-quality images as other, less
expensive cameras.

1.1 Problem definition

The changes of lighting and vehicle movement can cause difficulties when matching
the image representations, as well as different camera settings could reflect in error.

In computer vision, there are simple methods to find objects with specific color or
shape [4] [S]. Most methods are based on lines or corners, or other keypoint-based
descriptors extracted from template images. In the case of noisy and low-quality
pictures, low-level techniques can be applied. For example, template matching is a
method which is based on the pixel-level comparison of the reference and the tem-
plate. The matching process calculates the correspondence of the template image
with the reference image [6]. If the sizes of images differ, a sliding window con-
taining the template is moved over the reference. Most methods are able to handle
the scaling or the rotation of objects, however template matching is very sensitive to
these manipulations, although several additions exist to handle these.

A method introduced by Viola and Jones [7] is able to summarize pixel values into
image integrals, in order to accelerate processing of template data for training [8].
A similar, pixel-level approach available is to compare image projections of the
reference and the template images.

In this paper we introduce a multi-directional projection calculation method, which
is then used to match low-quality images of vehicles (Fig. 1). In Section 2 a brief
overview of the related works are given, Subsection 2.1 formally defines image
projections and signatures formed from them and in Subsection 2.2 the paradigm
of multi-directional projection is presented. Subsection 3.1 contains the declaration
of our novel method of projecting images to a fixed number of bins, the parallel
implementation of the suggestion is in Subsection 3.2. The matching technique of
the signatures are analyzed and the comparison of our results is shown in Section 4.

-

Figure 1
Sample images from our dataset. The vehicles are viewed from behind on these low quality images.
Resolution goes from 50 x 50 to 150 x 150.
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2 Related work

Tracking the color information and transforming these data between camera-based
models [9] is an appropriate method when objects are tracked in a system of multiple
cameras with non-overlapping fields of view. In other relevant work [10], color
correlograms are used to match vehicles in different poses. However, these methods
are mainly based on color information and assume that the vehicles could show up
in different poses.

A matching based on Support Vector Machine (SVM) classification is presented in
[11], where the detected edges of the vehicle pairs are used to train the classifier to
detect which are the same and the different objects.

Jelaca et al. [12] presented a solution for vehicle matching, where object signatures
are calculated from projection profiles, and to tolerate potential faults caused by the
changing environment and the movement of the object. These projections are joined
together in an appearance model. Our work is motivated by this matching technique.
Our goal is to increase the precision by using multiple projection directions, and a
fixed vector length for all directions.

2.1 Image projection signature

The detection of the vehicles on the image plane could be done several ways: a pre-
trained detector based on Haar-features could be applied [13], or even convolutional
neural networks seem to perform well on detecting multiple objects on images [14].

After the region of interest is selected, the area is completed to a square and cropped.
Since color data are irrelevant, the objects images are grayscaled, meaning that the
information is simplified from a RGB structure to a single intensity value. In the
case of 8-bit grayscale images the intensity information of one pixel is stored in one
single byte.

Each image can be handled as matrix I € NV*N where [; ; = [0---255] denotes
the element of the matrix. The horizontal () and vertical projections (fy) for a
squared N x N matrix results in vectors with the same length:

|| = [®y| =N. e))

These projections are the averaged sums of the rows and columns of the matrix,
normalized to [0, 1] by the value of maximal intensity 255:

1 N

= Ii,.'a
N-255 FZ’I /

EH(i)

2
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The diagonal and antidiagonal projections can be calculated likewise, but it is im-
portant to point out that the number of elements for each projected value is not
constant. While the length of the diagonal projection vectors are:

|7L'D|=|7L'A‘=2><N—1, (3)

the number of elements in each summarization is based on the distance from the
main diagonal:

] ifi <N
ElemNum(i) = {l nr= ) 4)

N—i otherwise

where i is the index of an element in a diagonal projection, having i <2 x N — 1.
The calculation of the diagonal projections fp, 4 is formalized as:

i

1 e
ElenNum(255 & L n—(i—j) ifi<N
ﬁD(i) = l l*N
ElemNuam(7) 255 jgl Lis-n),;  otherwise
&)
ElerNan(7555 Ell ifi<N
Ta (l) = 1 i—N
ElemNum(i)-255 jgl L i-nyN—(-1) otherwise
These vectors together provide a so-called signature of the object.
S4:(7L'H,Ev,7l']_),7l'A), (6)
as a 4 dimensional signature, while
Sz = (%u, my ), e

can also be used as a way simpler 2D signature.

2.2 Multi-directional projections

A logical addition to the signatures above is to calculate the projections of the object
from more than four directions. There are few methods that provide a mapping
from 2D data to its 1D projections. One of them is the Radon transform [15] [16],
a formula which is mostly used with the Computer Tomography (CT) CT, Positron
Emission Tomography (PET) or Magneto Resonance (MR) scanners to reconstruct
images from the obtained data.

It is interesting to point out, that the Hough transform results in a very similar pro-
jection vector. The connection between the two is well-known and discussed thor-
oughly [17] [18].
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The common point of both transforms is that if the input is not circular, the length
of the projection vectors differ: each projection length depends on the angle.

The visual representations of the results of the transforms are referred as sinograms,
where the projection sums are presented for each direction. A sample of a sinogram
representation is on Fig. 2. The denomination sinogram comes from the sinusoid
representation of the points.

3 Methodology

Our novel method is based on the idea that adding more dimensions to the signature
model could provide more accurate results. Another goal is to create a technique
with fixed number of bins, where the number of significant elements of the projec-
tion vector does not depend on the angle of projection.

3.1 Image Projections with Fixed Resolution

As demonstrated on Fig. 3a, the projection line is placed to the left side of the
image (Fig. 3b), and it is rotated by a degrees around point P, which is in the top
left corner. In this case, & € [0, J].

While rotating the line, the lowest and highest points of the orthogonal projection
divide it into two segments around point P. The length of these can be easily given
as

LL =cos(0t) x N

HL =sin(a) x N ®

To create a fixed number of subsegments for all angles, segment LL + HL is divided

into S equal parts, where S stands for the number of bins, resulting in % in the
resolution. Finally the (x;y) projection position of each pixel is given as
start = /(x4 1)% +y? x cos(arctan(y,x + 1) + )
)
end = \/x2+ (y+1)2 x cos(arctan(y + 1,x) + o)
50 100 150 200 250 300 350
¢ (degrees)
Figure 2
A sample from the dataset and the sinogram of the Radon transform for the same image for [0;27]
degrees
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HL

LL

(a)
After the calculation of the projection
lengths HL and LL for rotation angle « is
done, the projection line is divided into

HL

start

end

LL

(b)
The value of one pixel could affect two
(or more) projection bins, according to
the resolution.

different number of pieces, according to
the projection resolution.

Figure 3

as seen on Fig. 3b.

Based on S, each pixel is projected into one or more subsegments of the projec-
tion line, each pixel should increase the value of all affected bins, proportionately.
Algorithm 1 defines the technique in pseudo language, for the better understanding.

The results for each direction are calculated for angles between 0 and 7 for an N x N
sized squared matrix I, and collected into R resulting matrix. In practice a step size
is used at the iteration of ¢. After LL and HL is specified, according to Eq. 8, the
resolution of the segment res is given by dividing the projection line into S pieces.
Each pixel p in image I is processed by calculating the position of the projection

Algorithm 1 Method to calculate Multi-Directional Projections of an Image

procedure MULTIDIRECTIONALPROJECTIONS(/, N, R)
for o := 0 — 7 step StepSize do
LL + cos(o) *N
HL + SIN(ot) *N
res < (LL+HL)/S
for all p € I do
start,end < POSITIONOF(p.X,p.Y, &)
RATIONALACCUMULATION(R, res, start,end, p)
end for
end for
end procedure
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using POSITIONOF, which is based on Equation 9, and the correct values of R are
increased proportionately, represented as function RATIONALACCUMULATION.

The behavior of RATTONALACCUMULATION procedure can be described as:
o If the number of affected bins is 1, the pixel value is added to the bin entirely

o If the number of affected bins is 2, a ration based on the projection segments
is added to each affected bin

o If the number of affected bins is more than 2, fully covered bins are increased
by the whole value, and the value of partially affected bins are raised accord-
ing to the portion of the projection.

The extension of this method to [0; 7] is done by moving point P to the upper right
corner, and rotating HL and LL with it respectively — or the same result could be
achieved by rotating the matrix counter-clockwise. Notable, that the method does
not need to be extended to a full circle, since the projections are equal on the [0; 7]
and [2m; 7] sections [19].

The resulting matrix of projected values is visualized on Fig. 4. The difference
compared to the Radon transform is remarkable: the sinusoids of the picture edges
are eliminated.

Although the method provides the necessary results, the performance is question-
able. The calculation complexity of the 4D signature is

Ti(N) = 0(4 x N*) = O(N?) (10)

which means that the performance is directly proportional to the projection count.
The runtime of the proposed method is

T5(N) = O(StepNumber x N*) = O(N?) (11)

where StepNumber >> 4, meaning that the performance of both methods depend on
the projection count of the signature. By analyzing the memory cost of the method,
we can declare that the original algorithm uses

2XN42X(2XN—-1)=6xN-2

double-precision floating point numbers to store the results, while our method uses
StepNumber x S doubles, where StepNumber >> 4, N < S <2x N —1.

20 40 60 80 50 100 150 200 250 300 350
o (degrees)

Figure 4
The results of the proposed method, displayed on a sinogram, similar used on Fig. 2.
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The value of the total bin number could be defined empirically as N, or constant
values could be used. A value less than N causes the compression of the data,
resulting in information loss, while greater values result in redundancy.

When using 4D signatures defined in [12], the longest projections are the diagonals,
as seen in Eq. 3, while the horizontal and vertical sums are almost half (Eq. 1). The
difference of the vector length could cause difficulties storing and handling the data:
instead of a matrix an array of different length array should be used.

Software implementations of the Radon transform and Hough transform both use a
2D matrix with the dimension StepNumber x (2 x N — 1), meaning that the unused
cells of the matrix are filled with empty data. The main advantage of the method
presented in this paper is that it does not store any empty values [19], which is
useful in data parallel implementations. Since the input matrix is not modified in
the iterations, and there is no dependency between calculation steps, multi-level
parallelization of the algorithm can be achieved.

3.2 Data parallel solution

The idea of using the architecture of a massive number of processing units in graph-
ical accelerators to solve computationally intense cases created General-Purpose
computing on Graphical Processing Units (GPGPU). In practice, these devices per-
form best on multi-dimensional matrix operations, such as this problem.

When running a calculation on a GPU, the first step must be the transferring of the
input data from the memory of the so-called host computer to the device memory.
This is the memory transfer time of initializing, which is raised with the time nec-
essary to move the results back from the graphical processor to the memory of the
hosting computer. These transfer times should be taken into account when designing
the application [20]; it would be wrong to try to access the memory of the computer
during the calculation, as it would significantly increase the runtime of the whole
procedure.

The code implemented on the GPU is referenced as a compute kernel. The design
of the kernel procedures determines the performance of the solution. To achieve the
best performance, optimal breakdown of the task is necessary. The aim is to use all
multiprocessing units, keeping in mind that access to common variables could cause
faults.

The correct usage of the memory architecture [20] of the device is crucial: trans-
fer and access times are present and could have remarkable effects on runtime if
designed badly. The main memory of the device — the global memory — could be
accessed by the threads, however the access times are better if the less accessible
storages, which are assigned to the blocks (shared memory) or the even less acces-
sible registers belonging to the threads themselves (local memory) are used.

A possible solution to achieve a data-parallel solution is to assign singular threads
to pixels, and calculate results for every angle, individually (Alg. 2). First, the input
matrix is divided into several smaller pieces. These image parts are copied into
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Algorithm 2 Kernel procedure to calculate the image projection for multiple direc-
tions
procedure MULTIDIRECTION_KERNEL(blk,IG,N,S,Rg)
Is < GETBLOCK (I, blk.X,bIk.Y)
Rg < new arrayl|
dispg < new arrayl]
for o := 0 — 7 step StepSize do
LL < cos(a)*N
HL < SIN(at) *N
res < (LL+HL)/S
start,end < POSITIONOF (blk.X,blk.Y + 1, )
dispg[at] « |start/res)|
end for
for all ¢ € threads do
for oy := 0 — 7 step StepSize do
LL; + cos(og)«N
HL; < SIN(ay) *xN
resp < (LLp+HLy)/S
starty,endy, < GPOS(blk.X,blk.Y,t.X,t.Y, o)
RATIONALACCUMULATION (R, resy,, starty,,endy,, Is[t X])
end for
end for
SUMMARIZATION(Rg, dispg, Rg)
end procedure

the shared memory. After the transfer, each thread of the block is assigned to each
element of the image section, and after the calculation is done the outcomes are
positioned and summarized for each angle. The results are first summarized thread
safely in the shared memory, then the results of blocks are accumulated in the global
memory, from where the final results are transferred back to the host.

The proposed method in Alg. 2 uses all three mentioned levels from the memory
architecture: indexes G, S and L indicate that the variables are stored in the global,
shared and local memories, respectively. The following list contains comments and
explanations for each member of the procedure:

blk: image block identifier

I: image in global memory

N: image size (width & height)

S: number of bins

Rg: result container in global memory

blk.X,blk.Y: coordinates of the block

GETBLOCK (I :,x,y): returns the block starting at x,y from A matrix
Is: image in shared memory

Rg: results in shared memory

dispg: precalculated dispositions in block memory
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e (: rotation angle

e LL HL: projection line segment lengths

e res: resolution: length of each bin

e POSITIONOF(x,y,@): position of a block with the coordinates of x,y on the

projection line for o rotation

start,end: starting and ending of the projection on the projection line

threads: container representing every thread on a block

t: a single thread

oy : rotation of a single pixel, iterated locally

LL;,HL;: projection line segment lengths used by a thread for a specific

rotation

t.X,t.Y: position of a pixel

e GPOS(bx,by,x,y,t): returns the projection position of a pixel referred at x,y
relatively to the block bx, by, for & rotation

e starty,endy: starting and ending position of projection, handled locally

e RATIONALACCUMULATION(Rg, 7, start,end,v): accumulates Rg with v, hav-
ing ry resolution from start to end using thread safe atomic increment

e SUMMARIZATION(Rs,disp,Rg): Rs values are summarized atomically into
R¢ based on the dispositions dispg

As earlier measurements [21] indicated (Fig. 5), the method performed with promis-
ing numbers in point of time and memory efficiency: while the processing times on
CPU increase exponentially, the runtime of the GPU-accelerated solution shows
linear behaviour.

4 Results

The dataset used for evaluating the method consists of 253 images of 21 different
vehicles, labeled manually. The point of view of the detected vehicles are the same,
the width and height of the squared images are in average 100 pixels, sizes vary from
48 x 48 to 150 x 150, sparsely with a few larger (200 x 200, 290 x 290) instances.

On Fig. 6 the results of the original method are visualized: the horizontal, verti-
cal, diagonal and antidiagonal projections are calculated, divided by the number of
elements, and normalized to fit to the [0; 1] interval, for both observations. The vi-
sualized projection functions show the same behaviour in cases of the horizontal,
vertical, diagonal and antidiagonal angles.

4.1 Matching

To calculate the alignment of the functions, the method suggested by Jelaca et al.
[12] is to align the projection functions globally, and then fine-tune with a local
alignment using a method similar to the Iterative Closest Point [22]. There are a
number of other methods to measure similarities [23].

Instead of building up the two-step alignment technique, we chose to apply the
Pearson correlation coefficient (PCC) with a shifting technique. Since the size of
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Figure 5
Comparison of runtimes for different image sizes [21]. The horizontal axis displays the width of the
squared images in pixels, the vertical axis shows the runtimes in milliseconds. The CPU ad GPU
implementation of the presented method was compared with the runtime of Matlab’s GPU-accelerated
Radon transform.

input images could differ, the projection functions are compared using a shifting
window technique: the shorter function is moved over the longer function, and each
correlation coefficient is calculated using the PCC formula.

(s) = cov(X,Ys)

= 5®o(ys) (12

Basically the p(s) correlation coefficients are calculated for each step, where the
number of steps is |y| — |x|, having |y| > |x|. ys stands for the section of y com-
pared with x in step s, cov() means the covariance between the two vectors, and &
indicates the standard deviation.

The range of the values are mapped to [—1; 1], which could be easily handled: the
higher the coefficient, the better the match. The highest value max, p(s) is selected
as p, defining the similarity of x and y. After all similarity values are calculated
for the projections, the result values are filtered with a rectifier, setting all negative
values to zero:

if
v ifv>0 =max(0,v) =v"

r(v) = (13)

0 otherwise

The penalization of the negative correlation is necessary because the projection in-
verses should not be used at all. Negative correlation values mean that the changes
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max pgy = 0.909, arg max pgy = 11 max psg = 0.956,arg max pgy = 1
image #1 sV SV SH SH

o

o
normalized projection

normalized projection
s
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normalized projection
normalized projection

\__/
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Figure 6
The behavior of the projections of the same vehicle on different observations. In the first column two
images of the same object is shown: mind the different sizes and the different lightning conditions, the
blink on the side. On the next four diagrams the vertical (top-left), horizontal (top-right), diagonal
(bottom-left) and the antidiagonal (bottom-right) projections are visualized, and aligned with the
highest calculated correlation.

of one function affects an opposite change on the other function, meaning that the
relationship between the two is inverse.

Since each dimension of the data should be equally handled, the suggestion of [12]
to use the Euclidean norm is applied here as well. A single value p is calculated
from the 4D signature as

poV r(pH)2+r(pv)22+ r(pp)” +r(Pa)® (14

where 2 is the square root of the dimension number. The measured similarities of
the 4D signature are visualized on Fig. 7.

The same method could be applied to evaluate the method presented in this paper:
the correlation of each fixed length projection function could be calculated, and the
results of the shifted PCC could be united using the Euclidean norm, defined above.

4.2 Evaluation

As already seen on Fig. 7, for the same vehicles the lowest similarity u is 0.6, while
the largest value is 0.98, which is quite convincing. However, when comparing all
different vehicles with each other, the results show great spread, represented on Fig.
8.

If a simple classification is done, where it is desired that 50% of the true matches
should pass, the line should be drawn to 0.82. However, using this threshold,
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The measured correlations and the calculated similarities in the case of comparing the same instances
with different observations. On the left a scatter diagram of the values of horizontal and vertical
coefficients py-py, and on the right is the same with diagonal and antidiagonal values p4-pp. Below
them is the y similarity value calculated by the Euclidean norm of these, according to Eq. 14.

19.29% of the different vehicles would also pass as false positives, which is way

too high.

This is caused by the high variance between the similarity values calculated for dif-
ferent vehicles: while the minimum value is 0.27, the highest calculated similarity is
97.69, with a 10.43% standard deviation. The application of the 2D signature show
the same low results: the threshold should be set to p > 0.833, resulting in 22.79%

false positives.

When applying the proposed method, several variables could be set: first, the StepSize
between each projection angle should be set. Our experiments are done with StepSize =

V3
5 degrees, 36

The resolution of the projection line is also a significant tradeoff variable. By setting
it to N for all images, every projection will be set to N number of bins. If the setting
is a constant, for example 100, as the average of the image sizes, will compress less
of the data, also some redundancy will come up on smaller images. Notable, that
the runtime for the calculation of correlation shortens significantly, as no sliding
window is needed, since the vector sizes are equal.

The method with the least compression of the data is the application of 2 x N — 1
resolution, which is the exact length of the diagonal. The results for these three
different settings are shown in Table 1.

When the proposed method is used with relative bin numbers, and results are matched
with the technique described before, the pass-rate and the portion of false positives

are closely the same.
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Figure 8
The high rate of false positives using a 4-dimensional signature. On the left side a scatter diagram of
measured py horizontal and py vertical correlations. On the right is a histogram of the distribution of
the similarities calculated for the same (red) and different (blue) objects.

Multi-directional with bin number:

n 4D N 2N-1 25 50 100 300
Threshold to pass 50% of true matches 0.833 0.820 0.819 0.819 0.881 0.875 0.873 0.872
Portion of false matches above this | 22.79% | 19.29% | 19.94% | 19.84% | 5.06% | 5.22% | 5.24% | 5.25%
Threshold to pass 80% of true matches 0.740 0.763 0.769 0.768 0.804 0.795 0.793 0.792

Portion of false matches above this | 56.75% | 48.85% | 48.40% | 48.67% | 21.26% | 21.64% | 21.82% | 21.85%
Median of the similarity values of true matches 0.833 0.820 0.819 0.819 0.882 0.875 0.873 0.872
Median of the similarity values of false matches | 0.760 0.761 0.766 0.766 0.697 0.691 0.689 0.688

Minimum of the similarity on true matches 0.479 0.601 0.573 0.571 0.566 0.557 0.554 0.553
Maximum of the similarity on false matches 0.978 0.976 0.970 0.970 0.968 0.964 0.962 0.962
Table 1

2D, 4D, fixed multi directional with bin number set as N, 2N-1, 25, 50, 100 and 300

However, when using a fixed number as the projection length for all input images,
results show that the number of false positives reduces significantly. For example
for bin number 25, the limit which passes through 50% of the true matches is drawn
at 1 > 0.881, which is higher than the border set at the two and four dimensional
signatures. The portion of false matches is only 5.06%, which is around four times
better than the false positives counted using the 2D and 4D signatures.

The difference between the results of the 4D signatures and our method with bin
number 25 is visualized on histograms (Fig. 9) generated from the similarity values
measured for true and false matches. The high false match rate is caused by the
moving window: the best similarity is handled as the final similarity, which leads to
high values. A possible solution would be to stretch the different length vectors to
the same size, and calculate the correlation correspondingly.

In our research, the optimal resolution number begins at a minimum of 10 bins for all
projections (Fig. 10). We understand, that in case of low numbers, the small details
are removed, and by the compression a small tolerance to changes is developed.

It might be interesting to present the top false positives and negatives of the method:
on Fig. 1la the falsely excluded vehicle pairs with the lowest similarity rate are
shown, while the couples of different vehicles with the highest calculated similarity
are on Fig. 11b. As Fig. 11a shows, the low similarity values measured for the
same vehicles are caused by different poses. By empirically evaluating the calcu-
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Figure 9
Histograms of the similarities measured using the 4D and the proposed method, red columns show the
percentage for the comparison of the same, and blue columns present the calculated values for different
objects. The diagram on the left presents the distribution of similarities using the 4D image projection
signature, while on the right side, the results of the proposed method is shown, with /36 step size, and
the projection bin number set to 25.

By ==

0.4

0.3 ff|

0.2

01 flﬂ

o 50 100 150

Figure 10
The rate of false positives if the threshold is adjusted to a limit where 50% (F50) or 80% (F80) of true
matches should pass, for different number of projection bins.

lated similarities, we learned that the correlation of each projection change as the
projection angle diverts from the vertical direction. The highest false positives are
caused by similar vehicles, blinks, or in few cases the same or similar type of a
vehicle is falsely recognized as the same instance.

Conclusions

In this paper, we defined a novel method to calculate image projections, similar to
the Radon transform. To increase the efficiency of the algorithm, we introduced a
data-parallel solution, which could be applied on graphical processors. After eval-
uating the results, we concluded that in case of a simple Euclidean norm-based
matching method the precision of the proposed method exceeds the rates given by
previously studied techniques.

As an overall procedure, other possibilities should be examined in each different
phase (Fig. 12): the image of the detected vehicle could be preprocessed (noise
removal, background subtraction).

Our future plans include the redesign of the matching procedure: a method regarding
the angle and the orientation of the vehicle, could lead to more precise predictions
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10 20 30 40

10 20 30 40 50

(a)
Images of the same vehicles, detected
falsely as negatives. Note the different
poses and blur.

20 40 60 80 20 40 B0 80

20 40

60 80

(b)
Images of different vehicles, detected as
positives. Note the similar blinks on the
side of the cars, and that few of them are
very much alike, even the same type.

Figure 11

Crop or extend to square

Camera input —| Vehicle detection / l / Match
Calculate projections
Figure 12
The overall approach as a block diagram: the method described in this paper discusses the last three
phases.

for the same or different vehicles. If the current Euclidean norm is to be used,
different weights should be rendered to each projections, based on their direction,
or more sophisticated classification methods should be applied.
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Notations and abbrevations

In this study we consequently used the following notations and abbreviations:

- 226 -



Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

N,start,end,LL,HL,S,... scalars

I image matrix

S,,S4 object signatures

Ty, Ty, Tp, T projection vectors

o standard deviation

cov() covariance between two vectors
p correlation coefficient

u similarity
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