
Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 217 –

Accelerated Half-Space Triangle Rasterization

Péter Mileff, Károly Nehéz, Judit Dudra

University of Miskolc, Department of Information Technology, Miskolc-

Egyetemváros, 3515 Miskolc, Hungary, mileff@iit.uni-miskolc.hu

University of Miskolc, Department of Information Engineering, Miskolc-

Egyetemváros, 3515 Miskolc, Hungary, aitnehez@uni-miskolc.hu

Bay Zoltán Nonprofit Ltd. for Applied Research, Engineering Division (BAY-

ENG), Department of Structural Integrity and Production Technologies, Iglói út 2,

3519 Miskolc, Hungary, judit.dudra@bayzoltan.hu

Abstract: Since the last decade, graphics processing units (GPU) have dominated the world

of interactive computer graphics and visualization technology. Over the years,

sophisticated tools and programming interfaces (like OpenGL, DirectX API) greatly

facilitated the work of developers because these frameworks provide all fundamental

visualization algorithms. The research target is to develop a traditional CPU-based pure

software rasterizer. Although currently it has a lot of drawbacks compared with GPUs, the

modern multi-core systems and the diversity of the platforms may require such

implementations. In this paper, we are dealing with triangle rasterization, which is the

cornerstone of rendering process. New model optimization as well as the improvement and

combination of existing techniques have been presented, which dramatically improve

performance of the well-known half-space rasterization algorithm. The presented

techniques become applicable in areas such as graphics editors and even computer games.

Keywords: half-space rasterization; bisector algorithm; software rendering

1 Introduction

The history of computer visualization goes back several decades, but its

importance has grown more significantly in recent years. More advanced

graphical features are dominant almost everywhere these days, from traditional

desktop computers to mobile and embedded devices. This is a result of a long

development process, which was mainly induced by the appearance of graphical

processors. While in early computer visualization only slow CPUs were used to

perform every stage of the entire rasterization process, nowadays graphics cards

(target hardware) have taken over this role. The main development directions of

the area are inspired and usually controlled by the professional computer game

and media industry and the increasing demands for CAD/CAM systems.

mailto:mileff@iit.uni-miskolc.hu
mailto:aitnehez@uni-miskolc.hu

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 218 –

However, we should not forget about the recent development of CPUs. Modern

CPUs have many advanced features due to multi-core technology and the

extended instruction set (e.g. SSE, AVX). Besides the development of the

instruction set and the increase of central cores, another important result is the

appearance of DDR4 type memories in 2014. Although these types are one order

of magnitude faster than older DDR3 RAMs, still cannot compete with the DDR5

type memory equipped in modern video cards. Nevertheless it is a significant step

forward to improve the speed of memory operations. The continuous development

of CPU technology encourages software developers to reconsider the structure and

logical model of their existing graphical applications. The usage of a multi-thread

game engine model is essential for today’s AAA-type computer games.

Developers of the most advanced graphics engines (Unreal Engine, CryEngine,

Frostbite, etc.) have already recognized the potential of these new opportunities.

The question may arise, whether it makes sense to deal with CPU-based solutions

if powerful GPUs are available today. The answer has already been given by

leading video game developers. Some modern games apply the CPU to perform

specific tasks to reduce GPU load. Software occlusion culling - where the CPU is

used to render polygons to occlusion buffer rather than the GPU – is a good

example of this hybrid approach. Several well-known games (e.g. KillZone 3,

Battlefield 3, etc.) and game engines (e.g. CryEngine) apply similar technologies

because CPUs have no latency problem of occlusion queries. Rasterization is

usually done in small resolution (e.g. Battlefield uses 256×114) and occlusion

testing can be done using a hierarchical software z-buffer [12] [19].

Using all this as a starting point, the central question that motivates this paper is

how to improve one of the fundamental visualization algorithms, i.e. a polygon fill

based rasterization on CPUs. Our objective is to propose algorithms and

extensions for the half-space rasterization model, which can serve as the basis of a

graphics engine applying more complex, possibly a hybrid graphics pipeline using

CPU for specific tasks.

2 Related Works

Software based rendering prospered between the end of the 90s and the beginning

of the 2000’s. Due to the appearance of GPUs, only a few papers (although an

increasing number of) that involve the CPU in the visualisation process have been

published in recent years. Most of these papers discuss general display algorithms

or shader oriented GPU specific solutions which cannot be applied on CPUs in

their original form.

During the early years of the rendering (1996-1998) ID Software and Epic Games

achieved remarkable results in the area of modern software based computer

graphics. Both companies have become famous for their high performance and

complex graphics engine offering high quality visualization solutions (e.g. colored

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 219 –

lighting, shadowing, volumetric lighting, fog, pixel accurate culling, etc.). These

engines were optimized for the Intel Pentium MMX processor family and their

rendering system was based on the scanline-based polygon filling approach

applying several additional technologies (e.g. BSP tree), so as to provide high

performance. After the continuous spreading of GPU-based rendering, software

rendering was pushed more and more into the background. Nevertheless, some

great results, e.g. Pixomatic Renderer developed by Rad Game Tools and the

Swiftshader [2] by TransGaming were achieved. Both products are fully DirectX 9

compatible, very complex and highly optimized taking advantage of multi-core

threading possibilities of modern CPUs. Their pixel pipeline can continuously

modify itself adapting to the actual rendering tasks. Since these products are all

proprietary, the details of their architectures are not available for the general

public. By developing DirectX, Microsoft provided the basis for the spread of

GPU technologies, and it also developed a software rasterizer called WARP [3].

The renderer is capable of taking advantage of multi-threads and in some cases it

is even able to outperform low-end integrated graphics cards.

In 2008, based on problem and demand investigations, Intel aimed to develop its

x86 based video card within the Larrabee project [5]. In a technological sense, the

card was a hybrid of the multi-core CPUs and GPUs. Its purpose was to provide

x86 cores-based, fully programmable pipeline with 16-byte-wide SIMD vector

units. The new architecture made it possible for graphic calculations to be

programmed in a more flexible way than GPUs with an x86 instruction set.

Other researchers proposed optimization of the triangle traversal algorithms, and

new rasterization models have been introduced. As a part of current results,

Hengyong Jiangl et al. [13] proposed a midpoint triangle rasterization traversal

algorithm, which reduces the number of traversal points and improves the

efficiency of graphics acceleration. Their approach is demonstrated by an FPGA.

Pablo et al. investigated and compared three different triangle traversal algorithms

(Box, Zig-zag, Hilbert Curve based) in terms of performance and they simulated

them in Matlab using ModelSim [22]. Their experimental results show that

important area-performance trade-offs can be met, when implementing key image

processing algorithms in hardware. Chih-Hao Sun et al. [15] demonstrated an edge

equation based tile-scan triangle traversal algorithm. In their solution, the basic

functions of parameter interpolation and rasterization can be executed with a

universal shared hardware to reduce the cost of rendering. By hardware sharing

and architecture design techniques of pipelining and scheduling, their algorithm

can meet real-time requirements for graphics applications at reasonable hardware

costs. An entirely new approach was presented by Olano et al., which is a

simplified solution for triangle scan conversion applying 2D homogeneous

coordinates for fast real-time rendering [17]. Their solution avoids costly clipping

tests and can render true homogeneous triangles significantly faster than previous

implementations. As a part of the new generation of parallel algorithms, Zack

Bethel outlined a modern, multi-thread tile based software rendering technique

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 220 –

using a block-based half-space theory where only the CPU is used for

calculations, which led to performance improvements [1]. The FreePipe Software

Rasterizer [9] focuses on multi-fragment effects, where each thread processes one

input triangle, determines its pixel coverage, and performs shading and blending

sequentially for each pixel. Due to the evolution of GPGPU, the idea of

performing software rendering by GPGPU has been raised several times. NVidia

proposed and investigated an efficient CUDA-based rendering model [6], the

performance of which is a factor of 2-8x compared to the hardware graphics

pipeline.

In recent years, major companies in the game industry have recognized the

potential of the CPU again [11]. Their game engine can delegate certain

visualization tasks to the CPU. In the game Battlefield 3 a SPU-based deferred

shading model was developed [12], where the objective was to use SPUs to

distribute shading work and offload GPU. In 2011, the game Killzone 3 supports

complex occluded environments. To cull non-visible geometry early in the frame,

the game uses PlayStation 3 SPUs to rasterize a conservative depth buffer and

performs fast synchronous occlusion queries against it [16]. The topic of software

occlusion culling has been investigated also by Intel Software in the paper [18]. It

presents a Killzone-like solution, but it is built upon an x86 basis and optimized

for SSE Streaming extensions.

Thus, as recent findings show, CPU-based approaches put an emphasis on again to

increase flexibility and performance. This paper investigates the optimization and

extensions of the triangle traversal and filling algorithm.

3 Basics of Rasterization

The aim of computer visualization is to display pixel sets (e.g. 2D image or

projected 3D objects) on the screen. The type of rendering algorithm or the

procedure of a presentable element largely depends on the applied hardware or

software based visualisation model. Rasterization is a very intensive process

computationally, especially when the visual element also contains an alpha

channel [7] [21].

Several approaches have been developed to represent shapes in memory, but

nowadays the most prevalent and most widely applied object representation is the

polygon mesh. During the modelling process the object is usually divided into

convex polygons, like triangles. Still, the rendering performance largely depends

on the applied rasterization algorithm. Although several different solutions have

been developed (Ray tracing, Volume Rendering, etc.), currently GPU

manufacturers use triangle filling based models in real-time visualisation. This

method allows significantly faster rendering than for example ray based

algorithms.

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 221 –

3.1 Triangle-based Filling

In a classical sense filling is performed pixel by pixel, so the inner iteration and

the various calculations need to be executed many times. Although the vertex

mapping and the traversal of the process seem to be simple, the filling

performance largely depends on the implemented algorithm and its optimization

level. We can state that it is a huge challenge to implement an algorithm, which

takes the possibilities of the modern CPU hardware into account and being highly

optimized at the same time. The parts of the filling model affect each other in a

complex form. The smallest change in the iteration logic can result in up to more

than a 10% performance difference.

Nowadays there are two widespread triangle filling algorithms: the scanline and

the half-space based algorithms. The main idea of the previous scanline approach

was to walk triangle line by line (scanline) from top to bottom. Each row

represents a line, whose starting and ending points are the intersections of the

triangle sides and the scanline along the x axis. The end points of the line can be

calculated incrementally using the slope values of the edges.

The scanline algorithm is widely used and can be optimized (e.g. s-buffer), but it

is difficult to adapt it to current hardware opportunities. The rasterization is

performed line by line, which has several unpleasant consequences for both

hardware and software implementation. One of these problems is that the

algorithm is asymmetric in x and y directions. In the case of thin triangles, the

performance may significantly vary between the horizontal and vertical

orientation. The outer scanline loop is serial, which is not favourable for hardware

implementation. The inner loop, which is responsible for scanline iteration is not

so SIMD-friendly because of the different line lengths. This makes the algorithm

orientation-dependent. Processing several lines at the same time for some reason

(e.g. Mipmapping, Multisampling) would mean further complications for

calculations. To sum up, the solution is hard to apply for parallel processing of

lines and pixels. A better solution would be if pixels were processed in 2x2 blocks

(quads), the expected increase in the performance would be significant.

Next, the paper focuses on the other approach, the half-space based triangle

traversal, where the basic algorithm and further optimization points are presented

which improves performance to a large extent.

4 Half-Space Rasterization

The name of this model is not unified in literature; some sources refer to it as a

point in a triangle, a bounding box or a half-plane algorithm. The basic idea of the

model originates from the polygon convexity: the interior of a convex polygon

formed by n number of edges can be defined as the intersection of the n half

spaces.

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 222 –

For triangles, the three half-planes clearly define the inner area.

Figure 1

Triangle, defined by half-planes

Several mathematical approaches describe the inner pixels of the triangle and they

all examine the question of how to describe edges. In the following a ‘Perp Dot’

product-based model is presented. The Perp Dot product [20] is the two-

dimensional equivalent of the three dimensional cross-products. It is a product

between two vectors in two dimensions and is obtained by taking the dot product

of one vector with the perpendicular one of the other. The perpendicular vector is

simply a vector at right angles to the vector it is based on with the same

magnitude. The definition of the formula for two-dimensional vectors and

applying it to a, b vectors is the following:

𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑏) = 𝑎⊥ ∙ 𝑏 = 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥 = |
𝑎𝑥 𝑎𝑦

𝑏𝑥 𝑏𝑦
|. (1)

The result is a scalar, which has specific properties:

 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑏) = 0 → 𝑎, 𝑏 are parallel

 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑏) > 0 → 𝑏 is counterclockwise from a

 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑏) < 0 → 𝑎 is counterclockwise from b

These properties are useful to determine whether a pixel is inside the triangle or

not. In the case of a P point, the product needs to be calculated with all the three

edges and to check its sign,

𝑐1 = 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑝), 𝑐2 = 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑏, 𝑝), 𝑐3 = 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑐, 𝑝).

The final point-triangle containment relation depends on the prior knowledge of

the triangle:

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 223 –

 if the vertices A, B, C are given in clockwise order, then P is inside the

triangle if 𝑐1 > 0 && 𝑐2 > 0 && 𝑐3 > 0

 if the vertices A, B, C are given in counter-clockwise order, then P is

inside the triangle if 𝑐1 < 0 && 𝑐2 < 0 && 𝑐3 < 0

 if the order of the vertices A, B, C is unknown, then P is inside the

triangle if

(𝑐1 > 0 && 𝑐2 > 0 && 𝑐3 > 0 | | 𝑐1 < 0 && 𝑐2 < 0 && 𝑐3 < 0)

4.1 The Simple Filling Approach

Based on the equations above, a simple filling algorithm can be formulated. First

of all a bounded area is needed to specify which set of pixels is required to travel.

We can use the area of the render target (e.g. screen buffer), but it requires a lot of

unnecessary iterations. A better solution is if we use the axis aligned bounding box

of the triangle. The pseudo code of the algorithm:

Calculate triangle bounding box (minX,minY,maxX,maxY);

Clip box against render target bounds(minX,minY,maxX,maxY);

Loop i=minX to maxX

 Loop j=minY to maxY

 P = P (i,j);

 c1 = perpDotProduct(𝐴𝐶̅̅ ̅̅ , 𝐴𝑃̅̅ ̅̅);

 c2 = perpDotProduct(𝐵𝐶̅̅ ̅̅ , 𝐵𝑃̅̅ ̅̅);

 c3 = perpDotProduct(𝐶𝐵̅̅ ̅̅ , 𝐶𝑃̅̅ ̅̅);

 if (c1 >= 0 and c2 >= 0 and c3 >= 0)

 renderPixel(P);

 end

end

As the first step, the algorithm calculates the axis-aligned bounding box of the

triangle and performs the clipping according to the bounds of the render target. In

the second part of the process, all the points of the bounding box are crawled.

Applying the above Perp Dot product formula the pixel-triangle containment

relation can be determined.

Firstly, it is important to emphasize that this model is simple and easy to

understand. Due to the bounding box the lines have the same length. Therefore.

this approach is more SIMD friendly than the classical scanline algorithm. Taking

advantage of the symmetry of the lines the model is much more parallel-friendly,

the block or tile-based approach can be used more effectively. The processing

logic is highly customizable for the CPUs used currently.

Although the basic algorithm seems simple, the model is not recommended in

practice for several reasons (slow performance, lack of sub-pixel precision and

filling rules). The main disadvantage is that the solution also travels unnecessary

pixels, which means a lot of superfluous iterations in case of large and elongated

triangles. The performance at these types of triangles will be significantly lower.

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 224 –

In the following, new approaches and optimizations will be presented, which

dramatically improve the performance of the basic algorithm making it suitable

for real-time games and other graphics-intensive applications.

5 Optimization Considerations

Developing a fast rasterizer is a complex task, high-level and multi-layered (code

and logic level) optimization is required. In order to achieve really good results,

full graphics pipeline optimization should be performed. However, the present

paper focuses on improving the rasterization performance. The rasterization

process constitutes the dominant part of the total performance requirement of the

image synthesis [21]. Thus, any kind of performance improvement (even

eliminating a division) affects the final result significantly.

Optimization should be performed on the basis of Michael Abrash’s idea:

‘Assume nothing’ [4]; any logical considerations and their results can only be

justified by measurements; the assumptions themselves are not acceptable. During

the optimization process two main goals can be set for the filling algorithm:

 The key issue is the acceleration of the calculations and iterations

because the basic algorithm is not efficient in CPU time.

 A more effective solution is required to traverse the pixels of the

bounding box

5.1 Incremental Approach

One of the main problems of the simple filling model is that the pixel by pixel

filling performed in the double iteration loop is extremely expensive

computationally. To optimize these loops, let us start from the calculation of the

Perp Dot product determinant. Based on the formula (1), the relationship of a

point P and edge AB can be described as follows:

|
𝐵𝑥 − 𝐴𝑦 𝑃𝑥 − 𝐴𝑥

𝐵𝑦 − 𝐴𝑦 𝑃𝑦 − 𝐴𝑦
| = (𝐵𝑥 − 𝐴𝑥)(𝑃𝑦 − 𝐴𝑦) − (𝐵𝑦 − 𝐴𝑦)(𝑃𝑥 − 𝐴𝑥). (2)

Performing the multiplications and by rearranging the factors (2) can be written

as:

𝐹01(𝑃) ≔ (𝐴𝑦 − 𝐵𝑦)𝑃𝑥 + (𝐵𝑥 − 𝐴𝑥)𝑃𝑦 + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥). (3)

The resulting equation is called edge function. Examining the factors, if the vertex

positions are constants, the function is linear for P. The other two edge functions

applying the same transformation are the following:

𝐹12(𝑃) ≔ (𝐵𝑦 − 𝐶𝑦)𝑃𝑥 + (𝐶𝑥 − 𝐵𝑥)𝑃𝑦 + (𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥), (4)

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 225 –

𝐹20(𝑃) ≔ (𝐶𝑦 − 𝐴𝑦)𝑃𝑥 + (𝐴𝑥 − 𝐶𝑥)𝑃𝑦 + (𝐶𝑥𝐴𝑦 − 𝐶𝑦𝐴𝑥). (5)

If a triangle is counter-clockwise, then every edge function is positive for P, and

the point is inside the triangle. 𝐹01 equation can be simplified by introducing

additional constant:

𝐼01 ≔ 𝐴𝑦 − 𝐵𝑦, (6)

𝐽01 ≔ 𝐵𝑥 − 𝐴𝑥, (7)

𝐾01 ≔ 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥. (8)

By substituting:

𝐹01(𝑃𝑥 , 𝑃𝑦) = 𝐼01𝑃𝑥 + 𝐽01𝑃𝑦 + 𝐾01. (9)

During the iteration we travel row by row: move one pixel to the right, then one

pixel up or down. Because 𝐹01 is linear, axis-aligned unit steps can be calculated

in both directions by using the introduced constants (6) (7) (8):

𝐹01(𝑃𝑥 + 1, 𝑃𝑦) − 𝐹01(𝑃𝑥 , 𝑃𝑦) = 𝐼01, (10)

𝐹01(𝑃𝑥 , 𝑃𝑦 + 1) − 𝐹01(𝑃𝑥 , 𝑃𝑦) = 𝐽01. (11)

If we move one pixel to the right, 𝐼01should be added to the edge function. If we

move one pixel up or down then 𝐽01 is the additive tag. Following the above logic,

the pseudo implementation of the iteration-based and modified filling algorithm is

as follows:

Calculate triangle bounding box (minX, minY, maxX, maxY);

Clip box against render target bounds (minX, minY, maxX,

maxY);

Const.: 𝐼01, 𝐽01, 𝐾01, 𝐼02, 𝐽02, 𝐾02, 𝐼03, 𝐽03, 𝐾03, 𝐹01, 𝐹02,𝐹03

Cy1=F01; Cy2=F02; Cy3=F03;

Loop j=minY to maxY step 1

 Cx1=Cy1; Cx2=Cy2; Cx3=Cy3;

 Loop i=minX to maxX step 1

 if (Cx1 > 0 and Cx2 > 0 and Cx3 > 0)

 RenderPixel(P);

 // Inner loop increments

 Cx1 -= I01; Cx2 -= I02; Cx3 -= I03;

 end

 // Outer loop increments

 Cy1 += J01; Cy2 += J02; Cy3 += J03;

end

5.2 A Block-oriented Half-Space Rasterization Model

The performance requirement of rasterization is caused by travelling all the pixels

of the bounding box because the box also contains pixels, which are outside the

triangle. Therefore, it is expedient to propose an extension of the basic model, by

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 226 –

which these pixels can be skipped. However, it is important to note that only those

logical approaches can be applied which can be quickly evaluated and executed.

Any operation executed in a double iteration loop and storing additional

intermediate states has a negative impact on the performance. In such cases the

cost of travelling unnecessary pixels will be less than the execution of control

logic. In the following an efficient block-based traversal algorithm will be

presented.

The unnecessary calculations can really be reduced, if the traversal process is

performed on larger pixel sets. To achieve this, the triangle bounding box should

be divided into squares which will be the basic units of the traversal logic. Figure

2 shows the essence of the block-based traversal method:

Figure 2

Block-based triangle covering

The smallest unit of iteration is a block. The algorithm is performed from top to

bottom, row by row and the top-left block can be chosen as the starting point of

the traversal. This approach provides an opportunity for the pixel-triangle

containment relation to be performed at a block level. It is sufficient to investigate

only the four corners of the square. On this basis, there are three cases:

1. every corner of the block is outside the triangle;

2. the block overlaps the triangle;

3. the block is completely inside the triangle.

The first case is the most favourable because in this case there is no need for

additional calculation on writing pixels into the framebuffer. The block can be

skipped entirely. The second case is the worst, where the pixel-triangle

containment calculation needs to be done for each pixel in the block, and

according to the results the color of the pixel should be calculated. This part of the

algorithm is essentially the same as the basic, pixel-level filling. Case 3 is also

favourable for traversal. Since each pixel of the block falls within the triangle,

there is no need to calculate the edge functions per pixel or do the containment

verification. Only the color of the pixels should be determined. The iteration also

allows an additional supplement. When the edge of a triangle is reached in a row,

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 227 –

we can move straight to the next row because only empty blocks can be found

from this position.

This traversal logic is simple, the block-level iteration does not require complex

calculations: only a state should be stored and an additional condition check is

required. Practical experience shows that the extra computing capacity for

executing the logic is slightly smaller than the cost of checking blocks to the end

of the row. However, the same solution cannot be applied for improving

performance of the pixel level processing inside a block type 2. Although it seems

appropriate, it degrades the performance.

The following pseudo code shows the logic of the algorithm:
Calculate triangle bounding box (minX, minY, maxX, maxY);

Clip box against render target bounds (minX, minY, maxX, maxY);

Loop j=minY to maxY step=q

 Loop i=minX to maxX step=q

 // Block corners

 C1x=i; C1y=(i+q-1) C2y=j; C2x=(j+q-1);

 if C1x, C2x, C1y, C2y all outside the triangle then

 continue;

 // Fully covered blocks

 if C1x, C2x, C1y, C2y all inside the triangle then

 RenderBlock(i,j,q);

 continue;

 end

 // Partially covered blocks

 Loop k=j to q step=1

 Loop l=i to q step=1

 if pixel(k,l) inside the triangle

 RenderPixel(k,l);

 end

 end

 end

end

The key element of the algorithm is the iteration block size. If the block size is too

small, then the block-level calculations require more computing capacity than

checking only simple pixels. If large block size is chosen, then there will be fewer

triangles which fulfil cases 1 or 3. Therefore, the block-based traversal does not

result in any performance improvement. Practical measurement experience shows

that an 8x8 block size typically provides accurate results.

The efficiency of the process can significantly be affected by the orientation of the

triangles. If the presented triangle mesh consists of large polygons, or the camera

view is close to a polygon, then the vast majority of the blocks will be in the

triangle (case 3). In this case, rasterization can be very fast, especially when

applying a SIMD instruction set in performance critical parts. However, if narrow

triangles are dominating, there will be no notable speed improvement because the

number of overlapping blocks is increasing (case 2).

Investigating modern computer games, it can clearly be seen that mainly pixel-

level effects are dominating (bump/normal/parallax mapping, etc.). Wherever

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 228 –

possible, programmers apply screen space pixel transformations instead of

increasing the number of polygons. Therefore, the block-based approach is well

applicable.

5.2.1 Benefits of the Block-based Model

The advantage of this approach is that during the process a lot of pixels outside the

triangle can be excluded from rasterization. The solution reduces the number of

iterations in the bounding box, which can fundamentally be a performance-

enhancing factor. Certain operations like perspective correct texture mapping or

mipmapping can be performed in larger units applying linear interpolation. It is

also favourable for visibility determination algorithms. In addition, a hidden

advantage of the block-based approach is that it allows a more localized memory

access and efficient CPU cache usage because data are located close each other.

The reduction of cache misses represents a further performance improvement [10].

Finally, it should not be forgotten that the block-based model is much more

parallel-friendly. Due to the distribution of operations to several threads, the block

as a larger unit has important advantages.

5.3 An Adaptive Half-Space Rasterization Model

The presented pixel- and block-level models can be applied in any triangle

orientation. However, their efficiency is unbalanced. The algorithm handling only

pixels is less efficient in the case of large triangles and the performance of the

block-based approach is not sufficient in the case of thin triangles. Another

performance-enhancing factor could be, if an adaptive model was used in

accordance with the characteristics of the triangle and changes were made in the

applied rasterization method dynamically. The precondition for this is to

determine the characteristic of the triangle.

It is expedient to define two groups: triangles, which are narrow and those which

correspond to the block-oriented approach. The orientation can be defined by

introducing a metric based on the bounding box of the triangle:

𝑜𝑟𝑖𝑒𝑛𝑡∆ =
𝐵𝐵𝑚𝑎𝑥𝑥−𝐵𝐵𝑚𝑖𝑛𝑥

𝐵𝐵𝑚𝑎𝑥𝑦−𝐵𝐵𝑚𝑖𝑛𝑦
 (12)

The definition of the formula is intentionally simple because rasterization setup

costs should be kept at a minimum level. The orientation is a positive number. Its

value is 1 if the bounding box is a rectangle. If the width is dominant, the value of

the ratio increases and if the height is dominant, the value will be reduced. We can

state that triangles with a ratio close to one are ideal for the block-based model, if

their size reaches at least one block along the x or y axis. The more we move away

from this value the more advisable it is to use the pixel-based algorithm. On this

basis, a range for switching between the two methods can be determined by

experience. Experience shows that it is triangles with orient values of 0.4 -1.6 that

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 229 –

should be rasterized with the block-based approach, in all other cases the pixel-

based algorithm is recommended.

The adaptive algorithm is especially advantageous since it is always the preferred

model that is applied of the two. Therefore, the rasterization performance can be

significantly increased.

5.4 Problem of Empty Blocks

Although the block-based approach significantly helps to travel the empty area of

the bounding box faster, the number of traversed empty blocks is still significant

and superfluous. The following example illustrates the problem well:

Figure 3

Block-based covering with empty block coloring

In Figure 3, the orange color indicates the traversed empty blocks. Since the

algorithm always starts the investigation of the rows from the left of the bounding

box, it travels several empty blocks before reaching the edges. Although these

calculations are computationally less intensive than reading or writing pixels, but

in the case of a complex scene a significant amount of unnecessary calculations

are involved. In the above example (Figure 3), there are 18 completely empty

blocks of all the 84, which is 21% of all the blocks. To reduce the traversal of the

empty area, several approaches have been developed, where the ZigZag [22] and

Backtrack [7] are the most widely known algorithms. Both algorithms perform

rasterization at pixel level and their main characteristic is that they exclude

unnecessary traversal at only one side of the triangle. However, on the other side,

when stepping to the next row, they are not able to skip every empty pixel in many

cases. In addition, the traversal direction changes row by row, which requires

storing more states and increasing the number of conditions (CPU branching can

be slow if statements are unpredictable).

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 230 –

5.5 A Block-based Bisector Half-Space Rasterization Model

In the following a block-based algorithm is presented which aims to minimize the

number of traversed empty blocks and thus to reduce unnecessary calculations.

Figure 4 explains the essence of the traversal.

The basic idea is that the problem of empty-block minimization can effectively be

solved if the traversal starts from a common point inside the triangle and moves in

two directions. The filling is divided into two directions along the y axis of the

bounding box and performed from top to bottom, bottom to top and to half of the

box.

Figure 4

Triangle traversal logic of the Bisector algorithm

The bidirectional traversal at row level starts from the inside out until an empty

block is reached. The starting block of the next row is calculated from the first two

blocks found outside the edges at the previous row:

 𝑆𝑡𝑎𝑟𝑡 𝑏𝑙𝑜𝑐𝑘 = 𝐿𝑒𝑓𝑡 𝑏𝑜𝑢𝑛𝑑 + (𝑅𝑖𝑔ℎ𝑡 𝑏𝑜𝑢𝑛𝑑 − 𝐿𝑒𝑓𝑡 𝑏𝑜𝑢𝑛𝑑) / 2. (14)

It is important to note that, if the starting block does not fall on a block boundary,

then rounding is also required. The division by two can significantly increase the

load. Therefore, in implementations it is expedient to use fixed-point arithmetic

because starting block can be calculated without division and with block boundary

alignment:

 𝑆𝑡𝑎𝑟𝑡 𝑏𝑙𝑜𝑐𝑘 += (𝐿𝑒𝑓𝑡 + (𝑅𝑖𝑔ℎ𝑡 − 𝐿𝑒𝑓𝑡) ≫ 1) & ~(𝑞 − 1). (15)

The traversal to the right direction starts from this block and the left starts filling

from the previous block. The first row is special because there is no information

available from the previous row. In this case, the x coordinate of the topmost

vertex aligned to block boundary can be used as a starting block because it is

inside the triangle. The initial state cannot be affected if two vertices of the

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 231 –

triangle are located at the top of the bounding box. Selecting either of them

provides accurate results because these points are located at the edges of the

bounding box.

Because of the block nature of the algorithm, due to the nature of the triangle

edges, the iteration to the left will not find any fillable block if only one block can

be filled in the first row. In this case, the value of the ‘Left bound’ takes the

boundary coordinates of the bounding box and based on (15) the next row will

definitely start at an outside block until the traversal reaches the interior of the

triangle along the y axis. This is a serious problem because it increases the

traversed empty blocks. To remedy this, the algorithm requires a further

extension: the value of the ‘Left bound’ should only be changed if any inside

block is found during the left directed traversal. Otherwise, its position should not

be updated, so the next row also starts from the block of the previous ‘Left

bound’, from the x coordinate of the topmost vertex.

The next key element of the algorithm is the requirement of the bottom-up

traversal. Figure 5 illustrates the basic problem performing only the top-bottom

crawling.

Figure 5

The inefficiency problem of the top-bottom only traversal

In cases when an edge of the triangle is very flat, the calculation of a new middle

block at the next row will result in an outside block (last row in Figure 5). The

best case for the traversal would be when the middle block arrives at the corner of

the bottom edges, but it cannot be guaranteed because the middle point is defined

by the previous row. Therefore, the number of traversed empty blocks can

increase.

The solution is offered by the bottom-up traversal of the lower part of the triangle.

As the starting block can exactly be determined from the x coordinate of the

bottommost vertex at this time, the traversal of the empty blocks seen in Figure 5

is completely eliminable like in Figure 4.

Although the solution appears complex, it does not require any complicated

calculations and the control logic is simple. The algorithm effectively minimizes

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 232 –

the traversal of the empty blocks. The pseudo-code of the full algorithm is as

follows:

Calculate triangle bounding box (minX, minY, maxX, maxY);

Clip box against render target bounds (minX, minY, maxX, maxY);

Find Topmost vertex, calculate leftPoint and rightPoint

halfY = minY + ((maxY - minY) >> 1)& ~(q - 1);

BlockSize = q;

Loop j=minY to (halfY + BlockSize) step=BlockSize

 midPoint = leftPoint + ((rightPoint-leftPoint) >> 1)& ~(BlockSize - 1);

 x = midpoint;

 Loop k=0 to 2 step=1

 Loop x to (q > 0 ? x < maxX : x > minX - BlockSize) step=q

 // Block corners

 C1x=x; C1y=(x+BlockSize-1) C2y=j; C2x=(j+BlockSize-1);

 if C1x, C2x, C1y, C2y all outside the triangle then

 continue;

 // Fully covered blocks

 if C1x, C2x, C1y, C2y all inside the triangle then

 RenderBlock(x,j,BlockSize);

 continue;

 end

 RenderPartiallyCoveredBlock(j,x, BlockSize);

 end

 q = -q;

 if k==0 then rightPoint = x - BlockSize;

 else leftPoint = x + BlockSize;

 x = midpoint – BlockSize;

 end

end

Find Bottommost vertex, calculate leftPoint and rightPoint

Loop j=maxY &~(BlockSize-1) to halfY step=-BlockSize

 Repeat the above part

end

6 Practical Experience and Results

To evaluate the above rasterization models from a practical point of view, a

single-threaded pipeline architecture was developed. Although it is possible to

apply distributed approaches in several parts of the pipeline, this paper only

focuses on accelerating single-threaded pixel operations.

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 233 –

6.1 The Test Environment

The sample programs were written in C++ applying the GCC 4.8.1 compiler and

the measurements were performed by an Intel Core i7-870 2.93 GHz CPU in a 64

bit Windows 7 environment. The implemented pipeline does not contain any

hand-optimized SIMD code parts, only the compiler-optimized code was applied.

The chosen screen resolution and color depth were 1024x768x32 in windowed

mode and the used hardware for the test was an ATI Radeon HD 5670 with 1 GB

of RAM. The software framebuffer was defined as a 32 bit unsigned integer array

aligned to 16 bytes. This made an effective pixel handling possible, which stored

the four components of a pixel together [21] to make memory operations faster.

The prototype application used a software z-buffer and backface culling to solve

visible surface determination, but texture mapping had not been implemented yet.

To illuminate objects, the Lambertian reflectance was applied and rasterization

used a top-left convention for filling.

6.2 Benchmark Results

During benchmarking, several different test cases were prepared. Each of them

represented a special group of tasks frequently occurring in practice. The

measured results are cumulated values calculated from the average frame rates

(FPS) during a 20 sec running period. The distance of the models from the camera

affects the performance largely. When an object is farther away, usually many

small triangles should be drawn. However, getting closer to the camera, the

projection of the polygons will be larger and the number of fillable pixels is

increasing. Test Cases for benchmark:

Case 1: low poly model located farther from the camera.

Case 2: low poly model located close to the camera. The polygons cover about the

80% of screen pixels.

Case 3: high poly model built from small triangles (head) located farther from the

camera

Case 4: high poly model built from small triangles (head) located close to the

camera. The polygons cover the entire screen.

Case 5: medium poly model (statue) cover about the 80% of screen pixels. The

model contains both small and large triangles.

Table 1 summarizes the results achieved by different types of rasterization

algorithms. The test results show that the basic half-space algorithm is proved to

be the slowest in every case as expected. Through its simplicity, it does not

contain any optimizations. The incremental based approach can be regarded as a

transition, its performance converges to the other, better solutions. If we examine

the block-based model, it can be seen that during the tests C3 and C4 its

performance was not satisfactory. The main reason for this is the nature of the

scenes.

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 234 –

Figure 6

Part of the sample models: head (196.602 triangles), statue (95.346 triangles)

Table 1

Benchmark results

Test

cases

Benchmarks (FPS)

Half-space algorithm variants

Simple

rasterizer

Incremental

rasterizer

Block-based

rasterizer

Adaptive

model

Adaptive and

Bisector

algorithm

C 1 112 294 456 506 517

C 2 58 165 552 552 564

C 3 60 67 51 67 69

C 4 23 37 35 40 45

C 5 69 97 106 125 132

These tests used high poly models built up from small triangles, which cannot be

managed effectively by the block-based algorithm (the number of partially

covered blocks increase). The adaptive model variant proved its efficiency in all

cases. The logic of its triangle-orientation-based decision was able to maintain the

high level performance. The fastest solution is achieved by the combination of

adaptive and bisector algorithms. This made it also possible to take advantage of

the reduction of empty blocks.

Conclusion

Although present day rasterization is almost exclusively performed by GPUs, we

cannot forget the opportunities offered by modern CPUs. It should be recognized

that certain functions can and should also be shared between GPU and CPU in

order to make a more effective and robust rasterization model. To bring the two

sides more closely together, this paper highlighted the basic problems of

visualization. We can see that developing a fast and effective rendering model is

not trivial, there are many difficulties. The authors presented some new variants of

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 235 –

the classic half-space triangle rasterization model, which fits much better with

modern CPUs and can be a good basis for developing a more complex rasterizer,

for example a hybrid pipeline between GPU and CPU. In the future, it is expected

that many applications will be released using a similar technology.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-

0001 project with support by the European Union, co-financed by the European

Social Fund.

References

[1] Bethel, Z.: A Modern Approach to Software Rasterization. University

Workshop, Taylor University, December 14, 2011

[2] TransGaming Inc: Why the Future of 3D Graphics is in Software, White

Paper: Swiftshader technology, Jan 29, 2013

[3] Microsoft Corporation: Windows Advanced Rasterization Platform

(WARP) guide. 2012

[4] Abrash, M.: Rasterization on larrabee. Dr. Dobbs Portal, 2009

[5] Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P.,

Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E.,

Juan, T., Hanrahan, P.: Larrabee: a Many-Core x86 Architecture for Visual

Computing. ACM Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH 2008 Volume 27 Issue 3, August 2008

[6] Laine, S., Karras T.: High-Performance Software Rasterization on GPUs.

High Performance Graphics, Vancouver, Canada, August 5, 2011

[7] Akenine-möller, T., haines, E.: Real-Time Rendering, A. K. Peters. 3
rd

Edition, 2008

[8] Sugerman, J., Fatahalian, K., Boulos, S., Akeley, K., and Hanrahan, P.:

Gramps: A Programming Model for Graphics Pipelines. ACM Trans.

Graph. 28, 4:1–4:11, 2009

[9] Fang, L., Mengcheng H., Xuehui L., Enhua W.: FreePipe: A

Programmable, Parallel Rendering Architecture for Efficient Multi-

Fragment Effects. In Proceedings of ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games, 2010

[10] Agner, F.: Optimizing Software in C++ An Optimization Guide for

Windows, Linux and Mac platforms. Study at Copenhagen University

College of Engineering, 2014

[11] Swenney, T.: The End of the GPU Roadmap. Proceedings of the

Conference on High Performance Graphics, 2009, pp. 45-52

P. Mileff et al. Accelerated Half-Space Triangle Rasterization

 – 236 –

[12] Coffin, C.: SPU-based Deferred Shading for Battlefield 3 on Playstation 3.

Game Developer Conference Presentation, March 8, 2011

[13] Xuzhi W., Feng G., Mengyao, Z.: A More Efficient Triangle Rasterization

Algorithm Implemented in FPGA, Audio, Language and Image Processing

(ICALIP), July 16-18, 2012

[14] McCormack J., McNamara R.: Tiled Polygon Traversal Using Half-Plane

Edge Functions, HWWS '00 Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, 2000,

pp. 15-21

[15] Chih-Hao, S., You-Ming, T., Ka-Hang, L., Shao-Yi, C.: Universal

Rasterizer with Edge Equations and Tile-Scan Triangle Traversal

Algorithm for Graphics Processing Units, In proceeding of: Proceedings of

the 2009 IEEE International Conference on Multimedia and Expo, 2009

[16] Valient, M.: Practical Occlusion Culling in Killzone 3, Siggraph 2011,

Vancouver, Oct. 14, 2011

[17] Olano, M., Trey, G.: Triangle Scan Conversion Using 2D Homogeneous

Coordinates, Proceedings of the 1997 SIGGRAPH/Eurographics Workshop

on Graphics Hardware, ACM SIGGRAPH, New York, August 2-4, 1997

[18] Chandrasekaran, C.: Software Occlusion Culling, Intel Developer Zone, Jan

14, 2013

[19] Leone, M., Barbagallo, L.: Implementing Software Occlusion Culling for

Real-Time Applications, XVIII Argentine Congress on Computer Sciences,

Oct. 9., 2012

[20] Hill, F. S. Jr.: The Pleasures of 'Perp Dot' Products. Chapter II.5 in

Graphics Gems IV (Ed. P. S. Heckbert) San Diego: Academic Press, 1994,

pp. 138-148

[21] Mileff, P., Dudra, J.: Advanced 2D Rasterization on Modern CPUs,

Applied Information Science, Engineering and Technology: Selected

Topics from the Field of Production Information Engineering and IT for

Manufacturing: Theory and Practice, Series: Topics in Intelligent

Engineering and Informatics, Vol. 7, Chapter 5, Springer International

publishing, 2014, pp. 63-79

[22] Royer, P., Ituero, P., Lopez-Vallejo, M., Barrio, Carlos A. L.:

Implementation Tradeoffs of Triangle Traversal Algorithms for Graphics

Processing, Design of Circuits and Integrated Systems (DCIS), Madrid,

Spain; November 26-28, 2014

