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Abstract: Since the last decade, graphics processing units (GPU) have dominated the world 

of interactive computer graphics and visualization technology. Over the years, 

sophisticated tools and programming interfaces (like OpenGL, DirectX API) greatly 

facilitated the work of developers because these frameworks provide all fundamental 

visualization algorithms. The research target is to develop a traditional CPU-based pure 

software rasterizer. Although currently it has a lot of drawbacks compared with GPUs, the 

modern multi-core systems and the diversity of the platforms may require such 

implementations. In this paper, we are dealing with triangle rasterization, which is the 

cornerstone of rendering process. New model optimization as well as the improvement and 

combination of existing techniques have been presented, which dramatically improve 

performance of the well-known half-space rasterization algorithm. The presented 

techniques become applicable in areas such as graphics editors and even computer games. 
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1 Introduction 

The history of computer visualization goes back several decades, but its 

importance has grown more significantly in recent years. More advanced 

graphical features are dominant almost everywhere these days, from traditional 

desktop computers to mobile and embedded devices. This is a result of a long 

development process, which was mainly induced by the appearance of graphical 

processors. While in early computer visualization only slow CPUs were used to 

perform every stage of the entire rasterization process, nowadays graphics cards 

(target hardware) have taken over this role. The main development directions of 

the area are inspired and usually controlled by the professional computer game 

and media industry and the increasing demands for CAD/CAM systems. 

mailto:mileff@iit.uni-miskolc.hu
mailto:aitnehez@uni-miskolc.hu


P. Mileff et al.  Accelerated Half-Space Triangle Rasterization 

 – 218 – 

However, we should not forget about the recent development of CPUs. Modern 

CPUs have many advanced features due to multi-core technology and the 

extended instruction set (e.g. SSE, AVX). Besides the development of the 

instruction set and the increase of central cores, another important result is the 

appearance of DDR4 type memories in 2014. Although these types are one order 

of magnitude faster than older DDR3 RAMs, still cannot compete with the DDR5 

type memory equipped in modern video cards. Nevertheless it is a significant step 

forward to improve the speed of memory operations. The continuous development 

of CPU technology encourages software developers to reconsider the structure and 

logical model of their existing graphical applications. The usage of a multi-thread 

game engine model is essential for today’s AAA-type computer games. 

Developers of the most advanced graphics engines (Unreal Engine, CryEngine, 

Frostbite, etc.) have already recognized the potential of these new opportunities. 

The question may arise, whether it makes sense to deal with CPU-based solutions 

if powerful GPUs are available today. The answer has already been given by 

leading video game developers. Some modern games apply the CPU to perform 

specific tasks to reduce GPU load. Software occlusion culling - where the CPU is 

used to render polygons to occlusion buffer rather than the GPU – is a good 

example of this hybrid approach. Several well-known games (e.g. KillZone 3, 

Battlefield 3, etc.) and game engines (e.g. CryEngine) apply similar technologies 

because CPUs have no latency problem of occlusion queries. Rasterization is 

usually done in small resolution (e.g. Battlefield uses 256×114) and occlusion 

testing can be done using a hierarchical software z-buffer [12] [19]. 

Using all this as a starting point, the central question that motivates this paper is 

how to improve one of the fundamental visualization algorithms, i.e. a polygon fill 

based rasterization on CPUs. Our objective is to propose algorithms and 

extensions for the half-space rasterization model, which can serve as the basis of a 

graphics engine applying more complex, possibly a hybrid graphics pipeline using 

CPU for specific tasks. 

2 Related Works 

Software based rendering prospered between the end of the 90s and the beginning 

of the 2000’s. Due to the appearance of GPUs, only a few papers (although an 

increasing number of) that involve the CPU in the visualisation process have been 

published in recent years. Most of these papers discuss general display algorithms 

or shader oriented GPU specific solutions which cannot be applied on CPUs in 

their original form. 

During the early years of the rendering (1996-1998) ID Software and Epic Games 

achieved remarkable results in the area of modern software based computer 

graphics. Both companies have become famous for their high performance and 

complex graphics engine offering high quality visualization solutions (e.g. colored 
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lighting, shadowing, volumetric lighting, fog, pixel accurate culling, etc.). These 

engines were optimized for the Intel Pentium MMX processor family and their 

rendering system was based on the scanline-based polygon filling approach 

applying several additional technologies (e.g. BSP tree), so as to provide high 

performance. After the continuous spreading of GPU-based rendering, software 

rendering was pushed more and more into the background. Nevertheless, some 

great results, e.g. Pixomatic Renderer developed by Rad Game Tools and the 

Swiftshader [2] by TransGaming were achieved. Both products are fully DirectX 9 

compatible, very complex and highly optimized taking advantage of multi-core 

threading possibilities of modern CPUs. Their pixel pipeline can continuously 

modify itself adapting to the actual rendering tasks. Since these products are all 

proprietary, the details of their architectures are not available for the general 

public. By developing DirectX, Microsoft provided the basis for the spread of 

GPU technologies, and it also developed a software rasterizer called WARP [3]. 

The renderer is capable of taking advantage of multi-threads and in some cases it 

is even able to outperform low-end integrated graphics cards. 

In 2008, based on problem and demand investigations, Intel aimed to develop its 

x86 based video card within the Larrabee project [5]. In a technological sense, the 

card was a hybrid of the multi-core CPUs and GPUs. Its purpose was to provide 

x86 cores-based, fully programmable pipeline with 16-byte-wide SIMD vector 

units. The new architecture made it possible for graphic calculations to be 

programmed in a more flexible way than GPUs with an x86 instruction set. 

Other researchers proposed optimization of the triangle traversal algorithms, and 

new rasterization models have been introduced. As a part of current results, 

Hengyong Jiangl et al. [13] proposed a midpoint triangle rasterization traversal 

algorithm, which reduces the number of traversal points and improves the 

efficiency of graphics acceleration. Their approach is demonstrated by an FPGA. 

Pablo et al. investigated and compared three different triangle traversal algorithms 

(Box, Zig-zag, Hilbert Curve based) in terms of performance and they simulated 

them in Matlab using ModelSim [22]. Their experimental results show that 

important area-performance trade-offs can be met, when implementing key image 

processing algorithms in hardware. Chih-Hao Sun et al. [15] demonstrated an edge 

equation based tile-scan triangle traversal algorithm. In their solution, the basic 

functions of parameter interpolation and rasterization can be executed with a 

universal shared hardware to reduce the cost of rendering. By hardware sharing 

and architecture design techniques of pipelining and scheduling, their algorithm 

can meet real-time requirements for graphics applications at reasonable hardware 

costs. An entirely new approach was presented by Olano et al., which is a 

simplified solution for triangle scan conversion applying 2D homogeneous 

coordinates for fast real-time rendering [17]. Their solution avoids costly clipping 

tests and can render true homogeneous triangles significantly faster than previous 

implementations. As a part of the new generation of parallel algorithms, Zack 

Bethel outlined a modern, multi-thread tile based software rendering technique 
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using a block-based half-space theory where only the CPU is used for 

calculations, which led to performance improvements [1]. The FreePipe Software 

Rasterizer [9] focuses on multi-fragment effects, where each thread processes one 

input triangle, determines its pixel coverage, and performs shading and blending 

sequentially for each pixel. Due to the evolution of GPGPU, the idea of 

performing software rendering by GPGPU has been raised several times. NVidia 

proposed and investigated an efficient CUDA-based rendering model [6], the 

performance of which is a factor of 2-8x compared to the hardware graphics 

pipeline. 

In recent years, major companies in the game industry have recognized the 

potential of the CPU again [11]. Their game engine can delegate certain 

visualization tasks to the CPU. In the game Battlefield 3 a SPU-based deferred 

shading model was developed [12], where the objective was to use SPUs to 

distribute shading work and offload GPU. In 2011, the game Killzone 3 supports 

complex occluded environments. To cull non-visible geometry early in the frame, 

the game uses PlayStation 3 SPUs to rasterize a conservative depth buffer and 

performs fast synchronous occlusion queries against it [16]. The topic of software 

occlusion culling has been investigated also by Intel Software in the paper [18]. It 

presents a Killzone-like solution, but it is built upon an x86 basis and optimized 

for SSE Streaming extensions. 

Thus, as recent findings show, CPU-based approaches put an emphasis on again to 

increase flexibility and performance. This paper investigates the optimization and 

extensions of the triangle traversal and filling algorithm. 

3 Basics of Rasterization 

The aim of computer visualization is to display pixel sets (e.g. 2D image or 

projected 3D objects) on the screen. The type of rendering algorithm or the 

procedure of a presentable element largely depends on the applied hardware or 

software based visualisation model. Rasterization is a very intensive process 

computationally, especially when the visual element also contains an alpha 

channel [7] [21]. 

Several approaches have been developed to represent shapes in memory, but 

nowadays the most prevalent and most widely applied object representation is the 

polygon mesh. During the modelling process the object is usually divided into 

convex polygons, like triangles. Still, the rendering performance largely depends 

on the applied rasterization algorithm. Although several different solutions have 

been developed (Ray tracing, Volume Rendering, etc.), currently GPU 

manufacturers use triangle filling based models in real-time visualisation. This 

method allows significantly faster rendering than for example ray based 

algorithms. 
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3.1 Triangle-based Filling 

In a classical sense filling is performed pixel by pixel, so the inner iteration and 

the various calculations need to be executed many times. Although the vertex 

mapping and the traversal of the process seem to be simple, the filling 

performance largely depends on the implemented algorithm and its optimization 

level. We can state that it is a huge challenge to implement an algorithm, which 

takes the possibilities of the modern CPU hardware into account and being highly 

optimized at the same time. The parts of the filling model affect each other in a 

complex form. The smallest change in the iteration logic can result in up to more 

than a 10% performance difference. 

Nowadays there are two widespread triangle filling algorithms: the scanline and 

the half-space based algorithms. The main idea of the previous scanline approach 

was to walk triangle line by line (scanline) from top to bottom. Each row 

represents a line, whose starting and ending points are the intersections of the 

triangle sides and the scanline along the x axis. The end points of the line can be 

calculated incrementally using the slope values of the edges. 

The scanline algorithm is widely used and can be optimized (e.g. s-buffer), but it 

is difficult to adapt it to current hardware opportunities. The rasterization is 

performed line by line, which has several unpleasant consequences for both 

hardware and software implementation. One of these problems is that the 

algorithm is asymmetric in x and y directions. In the case of thin triangles, the 

performance may significantly vary between the horizontal and vertical 

orientation. The outer scanline loop is serial, which is not favourable for hardware 

implementation. The inner loop, which is responsible for scanline iteration is not 

so SIMD-friendly because of the different line lengths. This makes the algorithm 

orientation-dependent. Processing several lines at the same time for some reason 

(e.g. Mipmapping, Multisampling) would mean further complications for 

calculations. To sum up, the solution is hard to apply for parallel processing of 

lines and pixels. A better solution would be if pixels were processed in 2x2 blocks 

(quads), the expected increase in the performance would be significant. 

Next, the paper focuses on the other approach, the half-space based triangle 

traversal, where the basic algorithm and further optimization points are presented 

which improves performance to a large extent. 

4 Half-Space Rasterization 

The name of this model is not unified in literature; some sources refer to it as a 

point in a triangle, a bounding box or a half-plane algorithm. The basic idea of the 

model originates from the polygon convexity: the interior of a convex polygon 

formed by n number of edges can be defined as the intersection of the n half 

spaces. 
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For triangles, the three half-planes clearly define the inner area. 

 

Figure 1 

Triangle, defined by half-planes 

Several mathematical approaches describe the inner pixels of the triangle and they 

all examine the question of how to describe edges. In the following a ‘Perp Dot’ 

product-based model is presented. The Perp Dot product [20] is the two-

dimensional equivalent of the three dimensional cross-products. It is a product 

between two vectors in two dimensions and is obtained by taking the dot product 

of one vector with the perpendicular one of the other. The perpendicular vector is 

simply a vector at right angles to the vector it is based on with the same 

magnitude. The definition of the formula for two-dimensional vectors and 

applying it to a, b vectors is the following: 

𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑏) =  𝑎⊥ ∙ 𝑏 = 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥 = |
𝑎𝑥 𝑎𝑦

𝑏𝑥 𝑏𝑦
|. (1) 

The result is a scalar, which has specific properties: 

  𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑏) = 0 → 𝑎, 𝑏 are parallel 

  𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑏) > 0 → 𝑏 is counterclockwise from a 

  𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑏) < 0 → 𝑎 is counterclockwise from b 

These properties are useful to determine whether a pixel is inside the triangle or 

not. In the case of a P point, the product needs to be calculated with all the three 

edges and to check its sign, 

𝑐1 = 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑎, 𝑝), 𝑐2 = 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑏, 𝑝),  𝑐3 = 𝑝𝑒𝑟𝑝𝐷𝑜𝑡𝑃(𝑐, 𝑝). 

The final point-triangle containment relation depends on the prior knowledge of 

the triangle: 
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 if the vertices A, B, C are given in clockwise order, then P is inside the 

triangle if  𝑐1 > 0   &&   𝑐2 > 0   &&  𝑐3 > 0   

 if the vertices A, B, C are given in counter-clockwise order, then P is 

inside the triangle if 𝑐1 < 0   &&   𝑐2 < 0   &&  𝑐3 < 0    

 if the order of the vertices A, B, C is unknown, then P is inside the 

triangle if 

(𝑐1 > 0   &&   𝑐2 > 0   &&  𝑐3 > 0  | |  𝑐1 < 0   &&   𝑐2 < 0   &&  𝑐3 < 0)  

4.1 The Simple Filling Approach 

Based on the equations above, a simple filling algorithm can be formulated. First 

of all a bounded area is needed to specify which set of pixels is required to travel. 

We can use the area of the render target (e.g. screen buffer), but it requires a lot of 

unnecessary iterations. A better solution is if we use the axis aligned bounding box 

of the triangle. The pseudo code of the algorithm: 

Calculate triangle bounding box (minX,minY,maxX,maxY); 

Clip box against render target bounds(minX,minY,maxX,maxY); 

Loop i=minX to maxX 

  Loop j=minY to maxY 

       P = P (i,j); 

       c1 = perpDotProduct(𝐴𝐶̅̅ ̅̅ , 𝐴𝑃̅̅ ̅̅ ); 

       c2 = perpDotProduct(𝐵𝐶̅̅ ̅̅ , 𝐵𝑃̅̅ ̅̅ ); 

       c3 = perpDotProduct(𝐶𝐵̅̅ ̅̅ , 𝐶𝑃̅̅ ̅̅ ); 

       if ( c1 >= 0 and c2 >= 0 and c3 >= 0 ) 

          renderPixel(P); 

   end  

end 

As the first step, the algorithm calculates the axis-aligned bounding box of the 

triangle and performs the clipping according to the bounds of the render target. In 

the second part of the process, all the points of the bounding box are crawled. 

Applying the above Perp Dot product formula the pixel-triangle containment 

relation can be determined. 

Firstly, it is important to emphasize that this model is simple and easy to 

understand. Due to the bounding box the lines have the same length. Therefore. 

this approach is more SIMD friendly than the classical scanline algorithm. Taking 

advantage of the symmetry of the lines the model is much more parallel-friendly, 

the block or tile-based approach can be used more effectively. The processing 

logic is highly customizable for the CPUs used currently. 

Although the basic algorithm seems simple, the model is not recommended in 

practice for several reasons (slow performance, lack of sub-pixel precision and 

filling rules). The main disadvantage is that the solution also travels unnecessary 

pixels, which means a lot of superfluous iterations in case of large and elongated 

triangles. The performance at these types of triangles will be significantly lower. 
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In the following, new approaches and optimizations will be presented, which 

dramatically improve the performance of the basic algorithm making it suitable 

for real-time games and other graphics-intensive applications. 

5 Optimization Considerations 

Developing a fast rasterizer is a complex task, high-level and multi-layered (code 

and logic level) optimization is required. In order to achieve really good results, 

full graphics pipeline optimization should be performed. However, the present 

paper focuses on improving the rasterization performance. The rasterization 

process constitutes the dominant part of the total performance requirement of the 

image synthesis [21]. Thus, any kind of performance improvement (even 

eliminating a division) affects the final result significantly. 

Optimization should be performed on the basis of Michael Abrash’s idea: 

‘Assume nothing’ [4]; any logical considerations and their results can only be 

justified by measurements; the assumptions themselves are not acceptable. During 

the optimization process two main goals can be set for the filling algorithm: 

 The key issue is the acceleration of the calculations and iterations 

because the basic algorithm is not efficient in CPU time. 

 A more effective solution is required to traverse the pixels of the 

bounding box 

5.1 Incremental Approach 

One of the main problems of the simple filling model is that the pixel by pixel 

filling performed in the double iteration loop is extremely expensive 

computationally. To optimize these loops, let us start from the calculation of the 

Perp Dot product determinant. Based on the formula (1), the relationship of a 

point P and edge AB can be described as follows: 

|
𝐵𝑥 − 𝐴𝑦 𝑃𝑥 − 𝐴𝑥

𝐵𝑦 − 𝐴𝑦 𝑃𝑦 − 𝐴𝑦
| = (𝐵𝑥 − 𝐴𝑥)(𝑃𝑦 − 𝐴𝑦) − (𝐵𝑦 − 𝐴𝑦)(𝑃𝑥 − 𝐴𝑥). (2) 

Performing the multiplications and by rearranging the factors (2) can be written 

as: 

𝐹01(𝑃) ≔ (𝐴𝑦 − 𝐵𝑦)𝑃𝑥 + (𝐵𝑥 − 𝐴𝑥)𝑃𝑦 + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥). (3) 

The resulting equation is called edge function. Examining the factors, if the vertex 

positions are constants, the function is linear for P. The other two edge functions 

applying the same transformation are the following: 

𝐹12(𝑃) ≔ (𝐵𝑦 − 𝐶𝑦)𝑃𝑥 + (𝐶𝑥 − 𝐵𝑥)𝑃𝑦 + (𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥), (4) 
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𝐹20(𝑃) ≔ (𝐶𝑦 − 𝐴𝑦)𝑃𝑥 + (𝐴𝑥 − 𝐶𝑥)𝑃𝑦 + (𝐶𝑥𝐴𝑦 − 𝐶𝑦𝐴𝑥). (5) 

If a triangle is counter-clockwise, then every edge function is positive for P, and 

the point is inside the triangle. 𝐹01 equation can be simplified by introducing 

additional constant: 

𝐼01 ≔ 𝐴𝑦 − 𝐵𝑦, (6) 

𝐽01 ≔ 𝐵𝑥 − 𝐴𝑥, (7) 

𝐾01 ≔ 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥.  (8) 

By substituting: 

𝐹01(𝑃𝑥 , 𝑃𝑦) = 𝐼01𝑃𝑥 + 𝐽01𝑃𝑦 + 𝐾01. (9) 

During the iteration we travel row by row: move one pixel to the right, then one 

pixel up or down. Because 𝐹01 is linear, axis-aligned unit steps can be calculated 

in both directions by using the introduced constants (6) (7) (8): 

𝐹01(𝑃𝑥 + 1, 𝑃𝑦) − 𝐹01(𝑃𝑥 , 𝑃𝑦) = 𝐼01, (10) 

𝐹01(𝑃𝑥 , 𝑃𝑦 + 1) − 𝐹01(𝑃𝑥 , 𝑃𝑦) = 𝐽01. (11) 

If we move one pixel to the right, 𝐼01should be added to the edge function. If we 

move one pixel up or down then 𝐽01 is the additive tag. Following the above logic, 

the pseudo implementation of the iteration-based and modified filling algorithm is 

as follows: 

Calculate triangle bounding box (minX, minY, maxX, maxY); 

Clip box against render target bounds (minX, minY, maxX, 

maxY); 

Const.: 𝐼01, 𝐽01, 𝐾01, 𝐼02, 𝐽02, 𝐾02, 𝐼03, 𝐽03, 𝐾03, 𝐹01, 𝐹02,𝐹03 

 

Cy1=F01; Cy2=F02; Cy3=F03; 

Loop j=minY to maxY step 1 

      Cx1=Cy1; Cx2=Cy2; Cx3=Cy3; 

      Loop i=minX to maxX step 1 

            if (Cx1 > 0 and Cx2 > 0 and Cx3 > 0 )           

                RenderPixel(P); 

            // Inner loop increments 

            Cx1 -= I01; Cx2 -= I02; Cx3 -= I03; 

      end  

      // Outer loop increments 

      Cy1 += J01; Cy2 += J02; Cy3 += J03; 

end 

5.2 A Block-oriented Half-Space Rasterization Model 

The performance requirement of rasterization is caused by travelling all the pixels 

of the bounding box because the box also contains pixels, which are outside the 

triangle. Therefore, it is expedient to propose an extension of the basic model, by 
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which these pixels can be skipped. However, it is important to note that only those 

logical approaches can be applied which can be quickly evaluated and executed. 

Any operation executed in a double iteration loop and storing additional 

intermediate states has a negative impact on the performance. In such cases the 

cost of travelling unnecessary pixels will be less than the execution of control 

logic. In the following an efficient block-based traversal algorithm will be 

presented. 

The unnecessary calculations can really be reduced, if the traversal process is 

performed on larger pixel sets. To achieve this, the triangle bounding box should 

be divided into squares which will be the basic units of the traversal logic. Figure 

2 shows the essence of the block-based traversal method: 

 

Figure 2 

Block-based triangle covering 

The smallest unit of iteration is a block. The algorithm is performed from top to 

bottom, row by row and the top-left block can be chosen as the starting point of 

the traversal. This approach provides an opportunity for the pixel-triangle 

containment relation to be performed at a block level. It is sufficient to investigate 

only the four corners of the square. On this basis, there are three cases: 

1. every corner of the block is outside the triangle; 

2. the block overlaps the triangle; 

3. the block is completely inside the triangle. 

The first case is the most favourable because in this case there is no need for 

additional calculation on writing pixels into the framebuffer. The block can be 

skipped entirely. The second case is the worst, where the pixel-triangle 

containment calculation needs to be done for each pixel in the block, and 

according to the results the color of the pixel should be calculated. This part of the 

algorithm is essentially the same as the basic, pixel-level filling. Case 3 is also 

favourable for traversal. Since each pixel of the block falls within the triangle, 

there is no need to calculate the edge functions per pixel or do the containment 

verification. Only the color of the pixels should be determined. The iteration also 

allows an additional supplement. When the edge of a triangle is reached in a row, 
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we can move straight to the next row because only empty blocks can be found 

from this position. 

This traversal logic is simple, the block-level iteration does not require complex 

calculations: only a state should be stored and an additional condition check is 

required. Practical experience shows that the extra computing capacity for 

executing the logic is slightly smaller than the cost of checking blocks to the end 

of the row. However, the same solution cannot be applied for improving 

performance of the pixel level processing inside a block type 2. Although it seems 

appropriate, it degrades the performance. 

The following pseudo code shows the logic of the algorithm: 
Calculate triangle bounding box (minX, minY, maxX, maxY); 

Clip box against render target bounds (minX, minY, maxX, maxY); 

Loop j=minY to maxY step=q 

    Loop i=minX to maxX step=q 

       // Block corners 

       C1x=i; C1y=(i+q-1) C2y=j; C2x=(j+q-1); 

       if C1x, C2x, C1y, C2y all outside the triangle then 

          continue; 

       // Fully covered blocks 

       if C1x, C2x, C1y, C2y all inside the triangle then 

           RenderBlock(i,j,q); 

           continue;  

       end 

       // Partially covered blocks 

       Loop k=j to q step=1 

           Loop l=i to q step=1 

              if  pixel(k,l) inside the triangle 

                  RenderPixel(k,l); 

           end 

       end 

   end 

end 

The key element of the algorithm is the iteration block size. If the block size is too 

small, then the block-level calculations require more computing capacity than 

checking only simple pixels. If large block size is chosen, then there will be fewer 

triangles which fulfil cases 1 or 3. Therefore, the block-based traversal does not 

result in any performance improvement. Practical measurement experience shows 

that an 8x8 block size typically provides accurate results. 

The efficiency of the process can significantly be affected by the orientation of the 

triangles. If the presented triangle mesh consists of large polygons, or the camera 

view is close to a polygon, then the vast majority of the blocks will be in the 

triangle (case 3). In this case, rasterization can be very fast, especially when 

applying a SIMD instruction set in performance critical parts. However, if narrow 

triangles are dominating, there will be no notable speed improvement because the 

number of overlapping blocks is increasing (case 2). 

Investigating modern computer games, it can clearly be seen that mainly pixel-

level effects are dominating (bump/normal/parallax mapping, etc.). Wherever 
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possible, programmers apply screen space pixel transformations instead of 

increasing the number of polygons. Therefore, the block-based approach is well 

applicable. 

5.2.1 Benefits of the Block-based Model 

The advantage of this approach is that during the process a lot of pixels outside the 

triangle can be excluded from rasterization. The solution reduces the number of 

iterations in the bounding box, which can fundamentally be a performance-

enhancing factor. Certain operations like perspective correct texture mapping or 

mipmapping can be performed in larger units applying linear interpolation. It is 

also favourable for visibility determination algorithms. In addition, a hidden 

advantage of the block-based approach is that it allows a more localized memory 

access and efficient CPU cache usage because data are located close each other. 

The reduction of cache misses represents a further performance improvement [10]. 

Finally, it should not be forgotten that the block-based model is much more 

parallel-friendly. Due to the distribution of operations to several threads, the block 

as a larger unit has important advantages. 

5.3 An Adaptive Half-Space Rasterization Model 

The presented pixel- and block-level models can be applied in any triangle 

orientation. However, their efficiency is unbalanced. The algorithm handling only 

pixels is less efficient in the case of large triangles and the performance of the 

block-based approach is not sufficient in the case of thin triangles. Another 

performance-enhancing factor could be, if an adaptive model was used in 

accordance with the characteristics of the triangle and changes were made in the 

applied rasterization method dynamically. The precondition for this is to 

determine the characteristic of the triangle. 

It is expedient to define two groups: triangles, which are narrow and those which 

correspond to the block-oriented approach. The orientation can be defined by 

introducing a metric based on the bounding box of the triangle: 

𝑜𝑟𝑖𝑒𝑛𝑡∆ =  
𝐵𝐵𝑚𝑎𝑥𝑥−𝐵𝐵𝑚𝑖𝑛𝑥

𝐵𝐵𝑚𝑎𝑥𝑦−𝐵𝐵𝑚𝑖𝑛𝑦
 (12) 

The definition of the formula is intentionally simple because rasterization setup 

costs should be kept at a minimum level. The orientation is a positive number. Its 

value is 1 if the bounding box is a rectangle. If the width is dominant, the value of 

the ratio increases and if the height is dominant, the value will be reduced. We can 

state that triangles with a ratio close to one are ideal for the block-based model, if 

their size reaches at least one block along the x or y axis. The more we move away 

from this value the more advisable it is to use the pixel-based algorithm. On this 

basis, a range for switching between the two methods can be determined by 

experience. Experience shows that it is triangles with orient values of 0.4 -1.6 that 
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should be rasterized with the block-based approach, in all other cases the pixel-

based algorithm is recommended. 

The adaptive algorithm is especially advantageous since it is always the preferred 

model that is applied of the two. Therefore, the rasterization performance can be 

significantly increased. 

5.4 Problem of Empty Blocks 

Although the block-based approach significantly helps to travel the empty area of 

the bounding box faster, the number of traversed empty blocks is still significant 

and superfluous. The following example illustrates the problem well: 

 

Figure 3 

Block-based covering with empty block coloring  

In Figure 3, the orange color indicates the traversed empty blocks. Since the 

algorithm always starts the investigation of the rows from the left of the bounding 

box, it travels several empty blocks before reaching the edges. Although these 

calculations are computationally less intensive than reading or writing pixels, but 

in the case of a complex scene a significant amount of unnecessary calculations 

are involved. In the above example (Figure 3), there are 18 completely empty 

blocks of all the 84, which is 21% of all the blocks. To reduce the traversal of the 

empty area, several approaches have been developed, where the ZigZag [22] and 

Backtrack [7] are the most widely known algorithms. Both algorithms perform 

rasterization at pixel level and their main characteristic is that they exclude 

unnecessary traversal at only one side of the triangle. However, on the other side, 

when stepping to the next row, they are not able to skip every empty pixel in many 

cases. In addition, the traversal direction changes row by row, which requires 

storing more states and increasing the number of conditions (CPU branching can 

be slow if statements are unpredictable). 
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5.5 A Block-based Bisector Half-Space Rasterization Model 

In the following a block-based algorithm is presented which aims to minimize the 

number of traversed empty blocks and thus to reduce unnecessary calculations. 

Figure 4 explains the essence of the traversal. 

The basic idea is that the problem of empty-block minimization can effectively be 

solved if the traversal starts from a common point inside the triangle and moves in 

two directions. The filling is divided into two directions along the y axis of the 

bounding box and performed from top to bottom, bottom to top and to half of the 

box. 

 

Figure 4 

Triangle traversal logic of the Bisector algorithm 

The bidirectional traversal at row level starts from the inside out until an empty 

block is reached. The starting block of the next row is calculated from the first two 

blocks found outside the edges at the previous row: 

 𝑆𝑡𝑎𝑟𝑡 𝑏𝑙𝑜𝑐𝑘 = 𝐿𝑒𝑓𝑡 𝑏𝑜𝑢𝑛𝑑 + (𝑅𝑖𝑔ℎ𝑡 𝑏𝑜𝑢𝑛𝑑 − 𝐿𝑒𝑓𝑡 𝑏𝑜𝑢𝑛𝑑) / 2. (14) 

It is important to note that, if the starting block does not fall on a block boundary, 

then rounding is also required. The division by two can significantly increase the 

load. Therefore, in implementations it is expedient to use fixed-point arithmetic 

because starting block can be calculated without division and with block boundary 

alignment: 

 𝑆𝑡𝑎𝑟𝑡 𝑏𝑙𝑜𝑐𝑘 += (𝐿𝑒𝑓𝑡 + (𝑅𝑖𝑔ℎ𝑡 − 𝐿𝑒𝑓𝑡) ≫ 1)  &  ~(𝑞 − 1). (15) 

The traversal to the right direction starts from this block and the left starts filling 

from the previous block. The first row is special because there is no information 

available from the previous row. In this case, the x coordinate of the topmost 

vertex aligned to block boundary can be used as a starting block because it is 

inside the triangle. The initial state cannot be affected if two vertices of the 
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triangle are located at the top of the bounding box. Selecting either of them 

provides accurate results because these points are located at the edges of the 

bounding box. 

Because of the block nature of the algorithm, due to the nature of the triangle 

edges, the iteration to the left will not find any fillable block if only one block can 

be filled in the first row. In this case, the value of the ‘Left bound’ takes the 

boundary coordinates of the bounding box and based on (15) the next row will 

definitely start at an outside block until the traversal reaches the interior of the 

triangle along the y axis. This is a serious problem because it increases the 

traversed empty blocks. To remedy this, the algorithm requires a further 

extension: the value of the ‘Left bound’ should only be changed if any inside 

block is found during the left directed traversal. Otherwise, its position should not 

be updated, so the next row also starts from the block of the previous ‘Left 

bound’, from the x coordinate of the topmost vertex. 

The next key element of the algorithm is the requirement of the bottom-up 

traversal. Figure 5 illustrates the basic problem performing only the top-bottom 

crawling. 

 

Figure 5 

The inefficiency problem of the top-bottom only traversal 

In cases when an edge of the triangle is very flat, the calculation of a new middle 

block at the next row will result in an outside block (last row in Figure 5). The 

best case for the traversal would be when the middle block arrives at the corner of 

the bottom edges, but it cannot be guaranteed because the middle point is defined 

by the previous row. Therefore, the number of traversed empty blocks can 

increase. 

The solution is offered by the bottom-up traversal of the lower part of the triangle. 

As the starting block can exactly be determined from the x coordinate of the 

bottommost vertex at this time, the traversal of the empty blocks seen in Figure 5 

is completely eliminable like in Figure 4. 

Although the solution appears complex, it does not require any complicated 

calculations and the control logic is simple. The algorithm effectively minimizes 
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the traversal of the empty blocks. The pseudo-code of the full algorithm is as 

follows: 

 

Calculate triangle bounding box (minX, minY, maxX, maxY); 

Clip box against render target bounds (minX, minY, maxX, maxY); 

 

Find Topmost vertex, calculate leftPoint and rightPoint 

halfY = minY  + ((maxY - minY) >> 1)& ~(q - 1); 

BlockSize = q; 

Loop j=minY to (halfY + BlockSize) step=BlockSize 

    midPoint = leftPoint + ((rightPoint-leftPoint) >> 1)& ~(BlockSize - 1); 

    x = midpoint; 

    Loop k=0 to 2 step=1   

       Loop x to (q > 0 ? x < maxX : x > minX - BlockSize) step=q   

          // Block corners 

          C1x=x; C1y=(x+BlockSize-1) C2y=j; C2x=(j+BlockSize-1); 

          if C1x, C2x, C1y, C2y all outside the triangle then 

             continue; 

          // Fully covered blocks 

          if C1x, C2x, C1y, C2y all inside the triangle then 

             RenderBlock(x,j,BlockSize); 

             continue;  

          end 

          RenderPartiallyCoveredBlock(j,x, BlockSize); 

       end 

       q = -q; 

       if k==0 then rightPoint = x - BlockSize; 

       else leftPoint = x + BlockSize; 

       x = midpoint – BlockSize; 

    end 

end 

 

Find Bottommost vertex, calculate leftPoint and rightPoint 

Loop j=maxY &~(BlockSize-1) to halfY step=-BlockSize 

 Repeat the above part 

end 

6 Practical Experience and Results 

To evaluate the above rasterization models from a practical point of view, a 

single-threaded pipeline architecture was developed. Although it is possible to 

apply distributed approaches in several parts of the pipeline, this paper only 

focuses on accelerating single-threaded pixel operations. 
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6.1 The Test Environment 

The sample programs were written in C++ applying the GCC 4.8.1 compiler and 

the measurements were performed by an Intel Core i7-870 2.93 GHz CPU in a 64 

bit Windows 7 environment. The implemented pipeline does not contain any 

hand-optimized SIMD code parts, only the compiler-optimized code was applied. 

The chosen screen resolution and color depth were 1024x768x32 in windowed 

mode and the used hardware for the test was an ATI Radeon HD 5670 with 1 GB 

of RAM. The software framebuffer was defined as a 32 bit unsigned integer array 

aligned to 16 bytes. This made an effective pixel handling possible, which stored 

the four components of a pixel together [21] to make memory operations faster. 

The prototype application used a software z-buffer and backface culling to solve 

visible surface determination, but texture mapping had not been implemented yet. 

To illuminate objects, the Lambertian reflectance was applied and rasterization 

used a top-left convention for filling. 

6.2 Benchmark Results 

During benchmarking, several different test cases were prepared. Each of them 

represented a special group of tasks frequently occurring in practice. The 

measured results are cumulated values calculated from the average frame rates 

(FPS) during a 20 sec running period. The distance of the models from the camera 

affects the performance largely. When an object is farther away, usually many 

small triangles should be drawn. However, getting closer to the camera, the 

projection of the polygons will be larger and the number of fillable pixels is 

increasing. Test Cases for benchmark: 

Case 1: low poly model located farther from the camera. 

Case 2: low poly model located close to the camera. The polygons cover about the 

80% of screen pixels. 

Case 3: high poly model built from small triangles (head) located farther from the 

camera  

Case 4: high poly model built from small triangles (head) located close to the 

camera. The polygons cover the entire screen. 

Case 5: medium poly model (statue) cover about the 80% of screen pixels. The 

model contains both small and large triangles. 

Table 1 summarizes the results achieved by different types of rasterization 

algorithms. The test results show that the basic half-space algorithm is proved to 

be the slowest in every case as expected. Through its simplicity, it does not 

contain any optimizations. The incremental based approach can be regarded as a 

transition, its performance converges to the other, better solutions. If we examine 

the block-based model, it can be seen that during the tests C3 and C4 its 

performance was not satisfactory. The main reason for this is the nature of the 

scenes. 
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Figure 6 

Part of the sample models: head (196.602 triangles), statue (95.346 triangles) 

Table 1 

Benchmark results 

Test  

cases 

Benchmarks (FPS) 

Half-space algorithm variants 

Simple 

rasterizer  

Incremental 

rasterizer 

Block-based 

rasterizer 

Adaptive 

model 

Adaptive and 

Bisector 

algorithm 

C 1 112 294 456 506 517 

C 2 58 165 552 552 564 

C 3 60 67 51 67 69 

C 4 23 37 35 40 45 

C 5 69 97 106 125 132 

These tests used high poly models built up from small triangles, which cannot be 

managed effectively by the block-based algorithm (the number of partially 

covered blocks increase). The adaptive model variant proved its efficiency in all 

cases. The logic of its triangle-orientation-based decision was able to maintain the 

high level performance. The fastest solution is achieved by the combination of 

adaptive and bisector algorithms. This made it also possible to take advantage of 

the reduction of empty blocks. 

Conclusion 

Although present day rasterization is almost exclusively performed by GPUs, we 

cannot forget the opportunities offered by modern CPUs. It should be recognized 

that certain functions can and should also be shared between GPU and CPU in 

order to make a more effective and robust rasterization model. To bring the two 

sides more closely together, this paper highlighted the basic problems of 

visualization. We can see that developing a fast and effective rendering model is 

not trivial, there are many difficulties. The authors presented some new variants of 
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the classic half-space triangle rasterization model, which fits much better with 

modern CPUs and can be a good basis for developing a more complex rasterizer, 

for example a hybrid pipeline between GPU and CPU. In the future, it is expected 

that  many applications will be released using a similar technology. 
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