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Abstract: This article represents a neural network-based adaptive sliding mode control 

(ASMC) method for tracking of a nonholonomic wheeled mobile robot (WMR) subject to 

unknown wheel slips, model uncertainties and unknown bounded disturbances. Self-

recurrent wavelet neural networks (SRWNN) are employed in order to approximate 

unknown nonlinear functions due to the unknown wheel slips, model uncertainties, and 

unknown bounded external disturbances. By doing this, their harmful effects are 

compensated effectively. Thanks to this control method, a desired tracking performance of 

the closed-loop control system is achieved where the position tracking errors converge to 

an arbitrarily small neighborhood of the origin, regardless their initial values. According 

to Lyapunov theory and LaSalle extension, the stability of the whole closed-loop system is 

guaranteed to achieve the desired tracking performance. It is unnecessary to preliminarily 

offline train the neural network weights since they are easily initiated. Online tuning 

algorithms are established and used, for training the weights. Computer simulations are 

implemented to demonstrate the validity and efficiency of this proposed control method. 
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1 Introduction 

In recent years, control problems for wheeled mobile robots (WMR) are 

considered remarkable, due to their inherent nonlinear properties such as 

nonholonomic constraints and their wide applicability in various areas. Many 

researchers, all over the world, have paid attention to solving the tracking 

problems of WMRs by employing various techniques with the assumption “pure 

rolling without slip” being always satisfied. For example, an adaptive tracking 

controller in [1] employing a backstepping technique was developed for the 

dynamics of WMRs with unknown parameters. The content in [2] expressed a 

robust adaptive control method to cope with parametric uncertainties and external 

disturbances for nonholonomic WMRs. A wavelet-network-based control method 

was proposed in [3] for the dynamics of WMRs with unstructured unmodelled 

dynamics and unknown disturbance. Owing to having a fast response, good 

transient performance, and robustness against parameter variations, unstructured 

unmodelled dynamics, and unknown disturbances, the sliding mode control 

(SMC) technique has been applied widely for trajectory tracking problems of 

nonholonomic WMRs. For instance, the work in [4] proposed a tracking controller 

using the SMC technique for nonholonomic WMRs in polar coordinates. In 

addition, the authors in [5] also proposed an adaptive neural SMC method for 

trajectory tracking of nonholonomic WMRs with model uncertainties and external 

disturbances. 

However, in practice, the assumption “pure rolling without slip” is often violated 

due to various factors such as slippery floor, external forces, and so on. The wheel 

slip is one of the reasons making the tracking performance of nonholonomic 

WMRs reduce considerably. Therefore, if one wants the tracking performance of 

the WMRs to be improved in such context, then control methods having the 

ability to overcome the undesired effects of the wheel slips must be taken into 

account. 

Several research results have been published for trajectory tracking of 

nonholonomic WMRs subject to the wheel slips. In particular, an adaptive 

tracking control method by means of neural networks was proposed in [6] in order 

to overcome the harmful effect of the wheel slips. By employing gyro-sensors and 

encoders, the slip ratios were calculated in [7], [8]. Then the control approaches to 

compensate the wheel slips were proposed in these reports. The work in [9] 

developed a robust controller dealing with not only slip-kinematics but also slip-

dynamics by employing the framework of differential flatness. The authors in [10] 

modeled overall the dynamics of a WMR subject to the wheel slips. Next, they 

proposed a discontinuous control technique for regulation control task and a SMC 

technique for sharp turning control task. The work in [11] proposed a feedback 

linearization control method for trajectory tracking of a WMR subject to both 

longitudinal and lateral slips between each driving wheel and the floor in an ideal 

condition where unknown bounded external disturbances, as well as, model 
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uncertainties did not exist. In addition, in this case, the values of the accelerations 

and velocities of the wheel slips could be measured precisely. On the contrary, 

such ideal condition barely exists in reality and it is difficult to exactly measure 

both the accelerations and the velocities of the wheel slips. Accordingly, it was 

impractical to employ this feedback linearization control method [11]. 

Therefore, most of these previous works assumed that the measurements of the 

wheel slips were made available by additional sensors such as global position 

systems (GPS), gyroscopes, accelerometers, etc. which are expensive and 

complex. 

On the other hand, the neural network (NN) has been utilized as one of the 

intelligent techniques to enhance the performance of closed-loop control systems. 

Unlike classification applications, the NN in feedback control application seems to 

be part of the closed-loop control system. For this reason, it is useful in order to 

have a NN closed-loop control system with on-line learning algorithms [12] 

without the need of a preliminary off-line learning phase for the NN weights. In 

regard to the works in [5], [13], [14], and [15], the closed-loop control systems 

including self-recurrent wavelet neural networks (SRWNN) have been proposed. 

In fact, the SRWNN is a combination of the properties of a recurrent neural 

network (RNN) [16], [17], namely the attractor dynamics, and the fast 

convergence of a wavelet neural network (WNN) [18], [19]. As a consequence, 

the SRWNN includes a mother wavelet layer comprising self-feedback neurons 

being able to not only capture the past information of the NN but also adapt 

sharply to quick changes of the control environment. 

These above research results have motived us to propose a neural network-based 

ASMC method for trajectory tracking of a nonholonomic WMR in the presence of 

the unknown wheel slips, model uncertainties, and unknown bounded external 

disturbances. In this work, the proposed controller is based on the SRWNNs to 

compensate the unknown wheel slips, model uncertainties, and unknown bounded 

external disturbances. Furthermore, the measurements of the wheel slips are 

unnecessary. In sense of Lyapunov and LaSalle extension, on-line tuning 

algorithms for all the weights of the SRWNNs are derived. The uniformly 

ultimately bounded property of all the signals in the closed-loop control system is 

also assured. 

This paper is organized as follows. In Section 2, the kinematics and dynamics of a 

nonholonomic WMR subjected to the unknown wheel slips as well as the structure 

of a SRWNN are briefly introduced. Section 3 expresses the problem statement 

and then proposes an ASMC method using SRWNNs, following which the 

stability of the whole closed-loop system is proven by using standard Lyapunov 

theory and LaSalle extension. Finally, computer simulations illustrate the validity 

and efficiency of the proposed control method in Section 4. 
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2 Preliminaries 

2.1 Kinematics of the Nonholonomic WMR with the Unknown 

Wheel Slips 

Let us take into account a nonholonomic WMR comprising two driving wheels 

and a caster wheel as shown in Figure 1. 

To be specific, point G(xG, yG) is the center of mass of the WMR platform. Next, 

M(xM, yM) is the midpoint of the wheel shaft and chosen as the reference point of 

the WMR.  is the heading angle of the WMR. b expresses haft of the wheel shaft 

length. r illustrates the radius of each driving wheel. F1 and F2 reveal the total 

longitudinal friction forces at the right and left wheel, respectively. F3 shows the 

totally lateral friction force along the wheel shaft. F4 and  describe external force 

and moment acting at G, respectively. 

When there is no wheel slip, the linear velocity and the yaw rate of the WMR, 

computed at M, are represented respectively as follows: 
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where R L,   denote the angular velocities of the right and left wheel about the 

wheel shaft, respectively. 

Therefore, the kinematics of the WMR is written as follows: 



Figure 1 

A nonholonomic WMR subject to unknown wheel slips 
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On the other hand, when the assumption of “pure rolling without slip” is violated, 

(1) and (2) are no longer true. Accordingly, let R and L be the coordinates of the 

longitudinal slip of the right and left wheels, respectively, and,  be the coordinate 

of the lateral slip along the wheel shaft (see Figure 1). In this case, the actual 

linear velocity of the WMR along the longitudinal direction is expressed in the 

following [11]: 


 R L R L R L

2 2 2

r        
        

The actual yaw rate of the WMR is computed as follows [11]: 

 R L R L ,
2 2

r

b b
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 (4) 

Thus, the kinematics of this WMR can be expressed in term of the coordinates of 

M as follows [11]: 


M

M

cos sin

sin cos
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     (5)

Due to the wheel slips, the perturbed nonholonomic constrains can be written as 

follows [20]: 

 R R M Mcos sinr x y b            (6) 

 L L M Mcos sinr x y b            (7) 

 M Msin cosx y          (8) 

2.2 Dynamics of the WMR with the Wheel Slips, the Model 

Uncertainties, and the Unknown Bounded External 

Disturbances 

Let  
T

G G R L R L, , , , , , ,x y      q  show a Lagrange coordinate vector. The 

nonholonomic constrains (6), (7), and (8) can be shown in the following form: 

   A q q 0       (9)
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where  
cos sin 0 1 0 0

cos sin 0 0 1 0

sin cos 1 0 0 0 0

b r

b r

a

 
 
 

  
    
   

A q 

The dynamic equation of the WMR can be represented as follows: 

  
T

d  Mq τ Nτ A q λ     (10)

where  
T

1 2 3, ,  λ  is the vector of Lagrange multipliers to be considered as 

nonholonomic constraint forces.  
T

R L, τ  is the input vector with R and L  

being the torques at the right and left driving wheel about the wheel shaft, 

respectively. dτ  is a vector illustrating the model uncertainties such as the 

unstructured unmodelled dynamic components and the unknown bounded external 

disturbances such as the unknown external forces such as F1, F2, F3, F4,  (see 

Figure 1). N  is the input transformation matrix shown as follows: 

T
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
 

   
N . 

Furthermore, it is easy to develop the following equation: 

      1 2 3   q S q v S q γ S q     (11)

where 
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Subsequently, taking the time derivative of (11), we obtain: 

           1 1 2 2 3 3      q S q v S q v S q γ S q γ S q S q  (12)
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It is easy to show that    T T
1 2 3S q A q 0 ,  T

1 2 2S q N I , where 2 2I  is an unit 

22 matrix, and i j0  is an ij zero matrix. Substituting (12) into (10), and then 

pre-multiplying the both sides of the new equation by  T
1S q , we get: 

 d      Mv Bv Qγ C G τ τ    (13)

where  d 1 dτ S q τ  is a vector illustrating the total uncertainty consisting of the 

model uncertainties and the unknown bounded disturbances. The matrices in (13) 

are shown in detailed as follows: 

T 11 12
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The parameters of the WMR in the above matrices are illustrated in Table 1. 

Table 1 

The parameters of a WMR 

Symbol QUANTITY Value 

mG The mass of the platform of the WMR 10 (kg) 

IG 
The inertial moment of the platform about the vertical 

axis through point G. 
4 (kg.m2) 

a The distance between G and M (see Figure 1). 0.2 (m) 

C The distance between P and M (see Figure 3) 0.5 (m) 

mW The mass of each driving wheel 2 (kg) 

IW 
The inertial moment of each driving wheel about the 

wheel shaft 
0.1 (kg.m2) 

ID 
The inertial moment of each wheel about its diameter 

axis 
0.05 (kg.m2) 

b Half-distance between two the wheels 0.3 (m) 

r The radius of each driving wheel 0.15 (m) 
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2.3 Structure of SRWNN 

Let us use SRWNNs [5], [13], [14], [15] with structure as shown in Figure 2 

including iN inputs, one output, and iN N wavelets in the mother layer as an 

estimator to compensate the unknown wheel slips, model uncertainties, and 

unknown bounded external disturbances. 

The structure of the SRWNNs comprises 4 layers: one input layer, a mother layer, 

a product layer, and one output layer. The output of each SRWNN is expressed as 

follows: 

     
1 11

i iNN N

j jk jk k k

j kk

y z N a x N


 
 

 
   

 
     (14) 

Here, the subscript jk reveals the k-th term of the j-th wavelet, N shows the 

number of iterations; the output y approximates an uncertainty; kx  reveals the k-th 

input; ka  seems to be a weight connecting the corresponding input to the output 

directly; j  illustrates the connection weight from the product nodes to the output 

node, and      1 /jk jk jk jk jkz N x N N          with ,jk  ,jk  and jk  

corresponding to the translation factor, the dilation factor, and the weight of self-

feedback loop, respectively.  1jk N   describes the one-step recurrent term of 

 jk N . 

Besides, the mother wavelets are selected as   21
exp

2jk jk jk jkz z z
 

   
 

. In this 

work, all of ,ka  ,jk  ,jk  jk , and j  are trained online by using the on-line 

tuning algorithms to be discussed subsequently. For convenience, the vector of all 

the weights is defined in the following form: 


T

T T T T T   w a β ς ρ υ     (15)

with 
T

1,..., ,...
ik Na a a   a  T

11,..., ,...
ijk N N

     β  T
11,...,

iN N
    ς 

T
11,..., ,...

ijk N N
     ρ  T

1,..., ,...,j N
     υ with1 ik N  1 j N  
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Figure 2 

Structure of SRWNN 

3 Problem Statement and Designing the Adaptive 

Sliding Mode Control 

3.1 Problem Statement 

The control objective is to design the ASMC method using SRWNN for trajectory 

tracking of the WMR in the presence of the unknown wheel slips, the model 

uncertainties, and the unknown bounded external disturbances so that the point P 

of the WMR (see Figure 3) tracks the desired point D without measuring the 

accelerations and velocities of the wheel slips. 

 

z
-1 

 

z
-1

 

 

z
-1

 

 

x1 

x
Ni

 

y 

a
1
 

a
Ni

 


1
 


N

 

Input 

layer 

mother 

layer 
product 

layer 
output 

layer 

 

z
-1

 

 

 



T. Nguyen et al. Neural Network-based Adaptive Sliding Mode Control Method for Tracking of a  
 Nonholonomic Wheeled Mobile Robot with Unknown Wheel Slips, Model Uncertainties,  
 and Unknown Bounded External Disturbances  

 – 112 – 

 

 

Figure 3 

The coordinate of the target is represented in the body coordinate system M-XY 

Remark 1: From Figure 3, we indicate  P P, ,x y   as the actual posture of the 

WMR. Similarly,  Pd Pd d, ,x y   denotes the desired one of the WMR. It is 

impossible to achieve such an arbitrarily good tracking performance in a finite-

time interval when controlling the WMR that the actual posture  P P, ,x y   tracks 

the desired one  Pd Pd d, ,x y   successfully in the presence of both the longitudinal 

slip and the lateral slip. In contrast, it is completely possible to obtain the 

arbitrarily good tracking performance, in a finite-time interval if one wants to 

control the WMR so that the actual position  P P,x y  tracks the desired one 

 Pd Pd,x y  in such situations (see Definition 1 and Definition 2 in [21]). 

3.2 Illustrating Sliding Surface 

Let O-XY be the global coordinate system, M-XY be the body coordinate system 

which is attached to the platform of the WMR (see Figure 3). The coordinate 

vector of the target is represented in M-XY as follows: 
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ζ    (16)

where  D D,x y  is the position coordinates of D (see Figure 3). 

Computing the second order derivative with respect to time of (16) yields 

 1 2 ,  ζ hv Ψ Ψ      (17)
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where 
2 2

1 1

1 1
1 1

2 2

2 2

r r

b b

r r

b b

 

 

    
      

     
 
  

h , 1Ψ  and 2Ψ
 
are nonlinear components 

revealed as follows: 

D D D D
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D D D D

cos sin sin cos
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x y x y

x y x y
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and D D
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D D

sin cos
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cos sin
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Ψ with 
2

R L 



 , 

2

R L 



 . 

Remark 2: Owing to  
2

1det
2

r

b
 h , if 1 ≠ 0, then h in (17) is invertible. 

Then, we define the vector of the position tracking errors as  
T

1 2 d,e e  e = ζ ζ , 

where dζ  is the desired coordinate vector of the target D in M-XY. From the 

control objective mentioned in Sub-section 3.1 and Figure 3, one can easily 

express  
T

d ,0Cζ . 

A sliding surface is defined as follows: 

 s e+Λe       (18)

where Λ  is a 22 diagonal, constant, positive definite matrix and can be chosen 

arbitrarily. 

3.3 Structure of the Closed-Loop Control System 

To begin with, let us propose the scheme of the whole closed-loop control system 

as shown in Figure 4. 

Afterwards, since directly depending on the accelerations and velocities of the 

unknown wheel slips which are not measured in this work, 2Ψ  in (17) is 

unknown. Therefore, let us define an auxiliary variable which can be measured 

easily as follows: 

  1
d 1 ,   κ h ζ Λe Ψ      (19)

Alternatively, one can rewrite (13) as follows: 

   Mv τ Bv d      (20)
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where d    d Qγ C G τ  shows all uncertainties because of the unknown 

wheel slips, the model uncertainties, and the unknown external disturbances. 

 

Figure 4 

Scheme of the whole closed-loop control system 

Adding Mκ  to both of the sides of (20) and then combining the result with (17), 

(18), and (19) leads to 

 1 1
2

     Mh s τ Mκ Bv d Mh Ψ    (21) 

Conversely, it is not easy to exactly know dynamic parameters of this WMR such 

as mass, moments of inertia, etc. Accordingly, it is impossible in order to precisely 

express all expressions consisting of these quantities. Therefore, one can show 

(21) in the following form: 

 1 1 1
2
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where ˆ M M M with M̂  showing an approximation of M. 

Remark 3: both M  and M̂  are always symmetric, invertible, positive definite 

matrices. 

Multiplying both of the sides of (22) by 
1ˆ 
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  1ˆ , s hM τ f x      (23)
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2

ˆ          f x hM Mh s Mκ Bv d Mh Ψ , 
T

T T   x v κ . 
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Thanks to the strong capability of the SRWNN for approximating unknown 
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and the unknown bounded external disturbances. By doing this, given a small 
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positive real number M , there exists a vector of optimal 

weights
T

T *T
1 2

    W w w  such that: 

    ˆ  f x f x W ε      (24)

Here, x is used as the input of the SRWNN; ε  is the vector of reconstruction 

errors and bounded by Mε . Then, an estimation of  ˆ 
f x W  can be 

expressed as    
T

SRWNN1 SRWNN2
ˆ ˆ ,y yf x W  with 

T
T T

1 2
ˆ ˆ ˆ,   W w w  

corresponding to an estimation of 
W . Particularly, *

1 2 1
ˆ, , ,

w w w and 2ŵ  are the 

weight vectors defined in (15). SRWNN1y and SRWNN2y  are the outputs of the 

SRWNNs  as shown in (14). 

One can express (24) again in the following form: 

        ˆ ˆ ˆˆ ˆ    
  

f x f x W f x W f x W ε   (25)

Let  f x W be the functional deviation as follows: 

      ˆ ˆ ˆ f x W f x W f x W     (26)

Here, ˆ W W W  is the weight deviation. 

The Taylor series expansion of  f x W  around Ŵ  gives: 

      ˆ O f x W f W W W     (27)

with  
 

*

*

ˆ*
ˆ




 


W W

f x W
f W

W
and  O W  denoting higher-order terms in 

Taylor series expansion. 

Due to (25), (26), and (27), we can rewrite (23) as follows: 

   1 ˆˆ ˆ ˆ' ,   s hM τ f x W f W W δ    (28) 

where  O δ W ε . 

Now, we propose the control input employing the SRWNNs as follows: 

  1 ˆˆ ˆ    
  

τ Mh Ks f x W     (29)

where K is a positive definition matrix and can be chosen arbitrarily. 



T. Nguyen et al. Neural Network-based Adaptive Sliding Mode Control Method for Tracking of a  
 Nonholonomic Wheeled Mobile Robot with Unknown Wheel Slips, Model Uncertainties,  
 and Unknown Bounded External Disturbances  

 – 116 – 

Furthermore, the on-line tuning algorithms for all the weights are proposed as 

follows: 

  
T

ˆ ˆ ˆ' ,    
 

W f W s s W     (30)

where   and   are positive tuning gains and can be selected arbitrarily. 

3.4 Stability 

Assumption 1: the optimal weight vector 
W  is bounded such that MW W . 

It is worth noting that MW  is not used to perform the proposed controller. It is, 

however, just employed with the purpose of analyzing the stability of the entire 

closed-loop control system. 

Assumption 2: all of D D D D, , , ,x y x y D ,x and Dy  are available and bounded. 

Assumption 3: the accelerations and velocities of the unknown wheel slips are 

bounded. 

Assumption 4: δ in (28) is bounded such that bδ with 0b  

Theorem 1: Let us consider the WMR subject to the unknown wheel slips, the 

model uncertainties, and the unknown bounded external disturbances with the 

kinematics (5) and the dynamics (13). If the control input using the SRWNN is 

proposed as (29), the weight vector is adjusted by (30), and Assumptions 1-4 are 

satisfied, then the errors, s and ,W  of the closed-loop control system as shown in 

Figure 4 are uniformly ultimately bounded and further s  can be kept arbitrarily 

small. 

Proof: Substitution of (29) into (28) results in the dynamics of the sliding vector 

as follows: 

  ˆ'   s Ks f W W δ      (31)

By contrast, a Lyapunov candidate function is chosen as follows: 


T 1 T1 1

2 2
V   s s W W      (32)

Taking the first derivative of V with time leads to 

 T 1 TV  s s W W      (33)

Because of ˆ W W , substituting (30) and (31) into (33) achieves 



Acta Polytechnica Hungarica Vol. 15, No. 2, 2018 

 – 117 – 

    T T ,V      s Ks δ s W W W    (34)

According to Assumption 1, it is useful to point out the following inequality: 

  
2T

MW   W W W W W    (35)

Substitution of (35) into (34) leads to 

  22

min MWV K     s s δ s W W   (36)

here Kmin is the minimum singular value of K . 

Due to    
22

M M

1 1
W W

2 2
 W W we have 


2 2

min M

1 1
W

2 2
V K b 

 
     

 
s s W   (37) 

Observing (37) reveals that V  is guaranteed to be negative definite as long as the 

term in the braces seems to be positive, that is, the following inequality is correct: 


2 2

min M

1 1
W

2 2
K b   s W    (38) 
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Figure 5 

Evolution of the wheel slips 
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Figure 6 

Comparison of tracking performances in Example 1 
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Figure 7 

Comparison of position tracking errors in Example 1 
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Figure 8 

Control inputs of the proposed control method in Example 1 
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As a consequence of this, according to Lyapunov theory and LaSalle extension, 

the error vectors, both s  and ,W are uniformly ultimately bounded in a compact 

set as follows: 


2 2

min M

1 1
, W

2 2
K b 

 
    
 

BU s W s W   (39)

As can be seen from (39), s  can be kept as small as possible by increasing Kmin 

suitably. 

4 Simulation Results 

In this section, computer simulations for trajectory tracking of the WMR were 

implemented to verify the correctness and effectiveness of the proposed control 

method. Moreover, a comparison between the tracking performance of this 

proposed control method and that of the feedback linearization control method 

[11] was executed to confirm the strong points of this proposed control method. 

For comparison, both of the two methods were performed under the same 

condition that there existed the model uncertainties and the unknown bounded 

external disturbances, and the accelerations and velocities of the unknown wheel 

slips were not measured. Namely, without loss generality, it was assumed that 

 
T

d 3 sin(0.5 ), 2.5 cos 0.4t t    τ (N.m) , and the unknown wheel slips 

between the floor and the driving wheels are illustrated as Figure 5. Furthermore, 

the estimation of the matrix M was assumed as ˆ 0.8M M . 

The control parameters were chosen as K = diag([6, 6]),  [2, 2]diagΛ . For 

simplicity, there was only one product node in each SRWNN. The weight tuning 

gains were set as 0.005,   and 0.15  . The initial values of the weight 

matrices were chosen to random numbers in [0, 1], other than that the weights of 

the self-feedback loops were chosen as 0. The initial posture of the WMR was 

assumed as xP = C = 0.5 (m), yP = 0 (m), and   = 0 (rad). 

For illustration, two the following examples were carried out by Matlab/Simulink 

software. 

Example 1: the target D was on a straight line with the following motion 

equation: 


D

D

4 ,

2 0.5

x t

y t

 


  
     (40) 

Simulation results are shown in Figure 6, Figure 7, and Figure 8.
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Figure 9 

Comparison of tracking performances in Example 2 
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Figure 10 

Comparison of position tracking errors in Example 2 
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Figure 11 

Control inputs of the proposed control method in Example 2 
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It is obvious from Figure 6 and Figure 7 that when the accelerations and velocities 

of the unknown wheel slips were not measured, and there existed the model 

uncertainties and the unknown bounded external disturbances; the approach in 

[11] could not overcome their undesired effects, whereas the proposed control 

method managed to effectively compensate the undesired effects. In addition, the 

control inputs of the latter were bounded as shown in Figure 8. 

Example 2: the target D moved on a circular trajectory expressed as follows: 


 

 
D

D

5 3cos 0.25 ,

2 3sin 0.25

x t

y t

  


 
     (41) 

The tracking performance is shown in Figure 9, Figure 10, and Figure 11. 

Noticeably, regardless of the unknown wheel slips, the model uncertainties, and 

the unknown bounded disturbances, the proposed control method managed to 

compensate their effects very effectively whereas the approach in [11] could not. 

Furthermore, the control inputs of the proposed method were bounded as 

illustrated in Figure 11. 

It should also note that in Figure 7 and Figure 10 the position tracking errors of 

the proposed control method almost converged to zero, but that of the approach in 

[11] did not. In general, the tracking performance of the former is better than that 

of the latter in both the above examples. 

It is clear that the vector of the position tracking errors, e in (18), converged to an 

arbitrarily small neighbourhood of the origin, thus, 1  converged to an adjustable 

small neighbourhood of C. Consequently, according to Remark 2, one can easily 

conclude that h in (17), (19), (21), (22), and (29) is invertible. 

From these simulation results, we can draw a conclusion that Theorem 1 is true 

and the proposed control method is robust against the unknown wheel slips, the 

model uncertainties, and the unknown bounded external disturbances. 

Conclusion 

In this work, an ASMC method based on SRWNN, with the online tuning 

algorithms has been developed, to allow the WMR to track a desired trajectory 

with the desired tracking performance, in the presence of the unknown wheel 

slips, model uncertainties and unknown bounded external disturbances. It is 

unnecessary for initial offline training for the weights of the SRWNN, since they 

can be initialized without difficulty. The online tuning algorithms are established 

from standard Lyapunov theory and LaSalle extension. It has been shown that not 

only the position tracking errors, but also, the neural network weight errors, are 

uniformly, ultimately bounded, via standard Lyapunov theory and LaSalle 

extension. The former can be kept arbitrarily small, by choosing the control gains 

appropriately. The results of the computer simulation confirmed the veracity and 

effectiveness of the proposed controller. 
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